INEQUALITIES FOR TRIGONOMETRIC INTEGRALS

By Paul Civin

Introduction. We are concerned with the following problem: If

$$
\begin{align*}
& f(x)=\int_{-R}^{R} e^{i x t} d s(t) \tag{0.1}\\
& g(x)=\int_{-R}^{R} \mu(t) e^{i x t} d s(t) \tag{0.2}
\end{align*}
$$

where $s(t)$ is a complex valued function of bounded variation on $[-R, R]$ and $\mu(t)$ is continuous, and if

$$
\begin{equation*}
|f(x)| \leqq M \quad(-\infty<x<\infty) \tag{0.3}
\end{equation*}
$$

then find a bound for $|g(x)|$.
The present paper is divided into two parts. In Part I, the general problem is considered for various classes of functions $\mu(t)$, sufficiently restricted so that non-trivial bounds for the corresponding functions can be found. Part II is devoted to the case in which $\mu(t)=(i t)^{\alpha}, 0<\alpha<1$, so that $g(x)$ is the fractional derivative of $f(x)$ of order α.

We shall consistently use the symbols appearing in (0.1), (0.2), and (0.3) with the meanings which they have in these formulas.

Part I

The following lemma gives the fundamental method of approach to the problem. We adopt the notation

$$
p(n)=n \pi / R \quad(n=0, \pm 1, \pm 2, \cdots)
$$

Lemma 1. If

$$
\begin{equation*}
\mu(t) e^{i a t}=\sum_{-\infty}^{\infty} c_{n} e^{i p(n) t}, \tag{1.1}
\end{equation*}
$$

where a is a real number, then

$$
\begin{equation*}
|g(x)| \leqq M \sum_{-\infty}^{\infty}\left|c_{n}\right| \quad(-\infty<x<\infty) \tag{1.2}
\end{equation*}
$$

Received May 21, 1941; presented to the American Mathematical Society (Preliminary report) April 26, 1940. The author wishes to thank Dr. R. P. Boas, Jr. for help in preparing this paper.

