SIMPLE EXPLICIT EXPRESSIONS FOR GENERALIZED BERNOULLI NUMBERS OF THE FIRST ORDER

By H. S. VANDIVER

Many different explicit expressions have been given for the Bernoulli numbers, and in many ways the simplest is the following, due to Kronecker:¹

(1)
$$b_{n-1} = \sum_{a=1}^{n} \binom{n}{a} \frac{S_{n-1}(a)}{a} (-1)^{a-1},$$

where

$$S_{n-1}(a) = 0^{n-1} + 1^{n-1} + 2^{n-1} + \dots + (a-1)^{n-1}, \quad 0^0 = 1,$$

the b's being defined by the recursion formula $(b + 1)^n = b_n$, n > 1, where after expansion by the binomial theorem we set $b^k = b_k$.

In the present note we shall consider what is called by the writer the generalized Bernoulli number of the first order,²

(2)
$$(mb+k)^n = b_n(m,k),$$

where this is to be interpreted symbolically as in the expression involving b above, and where m and k are integers, $m \neq 0$. We have, obviously, $b_n = b_n(1, 0)$.

We shall derive explicit expressions for this generalized number which include (1) as a special case, and a number of more general forms for (1). It will be shown that these explicit expressions will yield a number of properties of the generalized Bernoulli numbers which include most of the known arithmetical properties of the ordinary Bernoulli numbers.

Our point of departure is the formula³

(3)
$$(b(m, k) + rm)^{n+1} - b_{n+1}(m, k) = m(n+1) \sum_{i=0}^{r-1} (im+k)^n;$$

another proof was given by the writer.⁴ Then, in particular, the special case of this when r = 1, which may be written

(4)
$$(b(m, k) + m)^{n+1} - b_{n+1}(m, k) = m(n+1)k^n$$
,

Received February 18, 1941.

¹ L. Kronecker, Werke, vol. 2, Leipzig, 1897, pp. 405-406.

² H. S. Vandiver, On generalizations of the numbers of Bernoulli and Euler, Proceedings of the National Academy of Sciences, vol. 23(1937), pp. 555-559.

³ J. W. L. Glaisher, On the value of certain series, Quarterly Journal of Mathematics, vol. 31(1900), pp. 193-227; pp. 193-199.

⁴ H. S. Vandiver, An extension of the Bernoulli summation formula, American Mathematical Monthly, vol. 36(1929), pp. 36-37.