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1. Introduction. Let C denote an arbitrary Jordan curve of the complex
z-plane, and let z (w) be an analytic function which maps the exterior K of C
(i.e., the unlimited region bounded by C) conformally onto the region w > 1
so that the points at infinity correspond. We assume that this function is
defined so as to be continuous and univalent for 1 =< ]wl < . The Laurent
series for the function can be written as follows:

(1.1) (w) cw + Co + c + c.
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where c is the transfinite diameter of C.
The polynomials
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uniformly for z on any closed set M1 of K.

are called the fundamental polynomials of Lagrange interpolation in the points
o(eikn) on C. It is well known that

lim .o,(z)[’ I [c[[w ], z q(w), z in K,

-’ ( ]c [, z interior to C.

In the present paper we attack the more delicate problem of determining the exact
behavior of the sequence {on(z)}, rather than that of the sequence {] (z) l[n }.
The results to be established may be stated formally as follows:

THEOREM 1. If C is rectifiable, then

lim
on(z) 1(1.2)
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uniformly for z on any closed set M of the region inerior to C, and
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