NON-COMMUTATIVE CHAINS AND THE POINCARE GROUP

By William W. Flexner

J. W. Alexander, W. Mayer, A. W. Tucker and S. Lefschetz ${ }^{1}$ have abstracted from convex complexes an algebraic system carrying a "homology theory" which, when the algebraic system is itself a complex, becomes the ordinary homology theory of the complex. Chains are there commutative and the elements of a homology group are classes of cycles, each class being composed of cycles whose difference bounds a chain of higher dimension. It is the object of this paper to abstract from finite convex complexes in another direction to obtain an algebraic system S carrying non-commutative chains and a "homology group" π of dimension 1 whose elements are classes of cycles whose differences "bound" non-commutative chains of higher dimension. "Subdivision" of this algebraic system will be defined; the group π will be shown to be invariant under this subdivision; and, a non-trivial step in this case, it will be shown that when S is a convex complex, π is the Poincaré group.

1. The system S consists of "cells" each having associated with it an integer called its dimension and a function F (meaning boundary) whose domain is S and whose range is a subset of the "chains" of S. The cells comprise the neutral cell 1 and n-dimensional cells $\left\{E_{i}^{n}\right\}$ (called n-cells) in finite number for $n=$ $0,1,2$. It is convenient to suppose that 1 is an n-cell for each n. To simplify the notation, zero- and one-cells (or their inverses) will often be denoted by O, T, U, V and a, b, x respectively.

By an n-chain will be meant a "word" in the sense of the theory of nonAbelian groups with a finite number of generators, the letters of the word being n-cells or their inverses. For instance,

$$
\begin{array}{rlr}
C^{n} \equiv\left(E_{i_{1}}^{n}\right)^{x_{1}} \cdots\left(E_{i_{s}}^{n}\right)^{x_{s}}, & x_{k}= \pm 1, & \text { and } \\
D^{n} \equiv\left(E_{j_{1}}^{n}\right)^{y_{1}} \cdots\left(E_{j_{t}}^{n}\right)^{y_{t}}, & y_{k}= \pm 1 \tag{1.1}
\end{array}
$$

are n-chains, and if

$$
C^{n} D^{n}=\left(E_{i_{1}}^{n}\right)^{x_{1}} \cdots\left(E_{i_{s}}^{n}\right)^{x_{s}}\left(E_{j_{1}}^{n}\right)^{y_{1}} \cdots\left(E_{j_{t}}^{n}\right)^{y_{t}}
$$

and $\left(E_{i}^{n}\right)\left(E_{i}^{n}\right)^{-1}$ are written 1 , the n-chains form a free group \mathcal{C}^{n}. Obviously, more than one word defines the same element of \mathfrak{C}^{n}. This distinction between the word C^{n} and the element C^{n} of \mathcal{C}^{n} must be kept clear. A normal form for an element of \mathcal{C}^{n} can be obtained from a word giving rise to that element by sup-

[^0]
[^0]: Received February 21, 1941.
 ${ }^{1}$ S. Lefschetz, Bull. Am. Math. Soc., vol. 43(1937), pp. 345-359. (References to the other authors will be found on p. 345.)

