A GENERALIZATION OF BROUWER'S FIXED POINT THEOREM

By Shizuo Kakutani

The purpose of the present paper is to give a generalization of Brouwer's fixed point theorem (see [1] ${ }^{1}$), and to show that this generalized theorem implies the theorems of J. von Neumann ([2], [3]) obtained by him in connection with the theory of games and mathematical economics.

1. The fixed point theorem of Brouwer reads as follows: if $x \rightarrow \varphi(x)$ is a continuous point-to-point mapping of an r-dimensional closed simplex S into itself, then there exists an $x_{0} \in S$ such that $x_{0}=\varphi\left(x_{0}\right)$.

This theorem can be generalized in the following way: Let $\Omega(S)$ be the family of all closed convex subsets of S. A point-to-set mapping $x \rightarrow \Phi(x) \in \Omega(S)$ of S into $\Omega(S)$ is called upper semi-continuous if $x_{n} \rightarrow x_{0}, y_{n} \in \Phi\left(x_{n}\right)$ and $y_{n} \rightarrow y_{0}$ imply $y_{0} \in \Phi\left(x_{0}\right)$. It is easy to see that this condition is equivalent to saying that the graph of $\Phi(x): \sum_{x \in S} x \times \Phi(x)$ is a closed subset of $S \times S$, where \times denotes a Cartesian product. Then the generalized fixed point theorem may be stated as follows:

Theorem 1. If $x \rightarrow \Phi(x)$ is an upper semi-continuous point-to-set mapping of an r-dimensional closed simplex S into $\Re(S)$, then there exists an $x_{0} \in S$ such that $x_{0} \in \Phi\left(x_{0}\right)$.

Proof. Let $S^{(n)}$ be the n-th barycentric simplicial subdivision of S. For each vertex x^{n} of $S^{(n)}$ take an arbitrary point y^{n} from $\Phi\left(x^{n}\right)$. Then the mapping $x^{n} \rightarrow y^{n}$ thus defined on all vertices of $S^{(n)}$ will define, if it is extended linearly inside each simplex of $S^{(n)}$, a continuous point-to-point mapping $x \rightarrow \varphi_{n}(x)$ of S into itself. Consequently, by Brouwer's fixed point theorem, there exists an $x_{n} \in S$ such that $x_{n}=\varphi_{n}\left(x_{n}\right)$. If we now take a subsequence $\left\{x_{n_{\nu}}\right\}(\nu=1,2, \ldots)$ of $\left\{x_{n}\right\}(n=1,2, \cdots)$ which converges to a point $x_{0} \in S$, then this x_{0} is a required point.

In order to prove this, let Δ_{n} be an r-dimensional simplex of $S^{(n)}$ which contains the point x_{n}. (If x_{n} lies on the lower-dimensional simplex of $S^{(n)}$, then Δ_{n} is not uniquely determined. In this case, let Δ_{n} be any one of these simplexes.) Let $x_{0}^{n}, x_{1}^{n}, \cdots, x_{r}^{n}$ be the vertices of Δ_{n}. Then it is clear that the sequence $\left\{x_{i}^{n_{\nu}}\right\}(\nu=1,2, \cdots)$ converges to x_{0} for $i=0,1, \cdots, r$, and we have $x_{n}=\sum_{i=0}^{r} \lambda_{i}^{n} x_{i}^{n}$ for suitable $\left\{\lambda_{i}^{n}\right\}(i=0,1, \cdots, r ; n=1,2, \cdots)$ with $\lambda_{i}^{n} \geqq 0$ and $\sum_{i=0}^{r} \lambda_{i}^{n}=1$. Let us further put $y_{i}^{n}=\varphi_{n}\left(x_{i}^{n}\right)(i=0,1, \ldots, r ;$

Received January 21, 1941.
${ }^{1}$ Numbers in brackets refer to the list of references at the end.

