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Let A be closed subset of a spce X, and let f be homeomorphism of A
into a space Y. A homeomorphism f* of X into Y is called an extension of f
when f*(x) f(x) for every x e A. If A is the null set, every homeomorphism
f* of X into Y is an extension of f. Thus the problem of extending a given
homeomorphism is a generalization of the problem of imbedding. Guided by
this remark I shall prove the following generalization of the Menger-NSbeling
imbedding theorem"

(1) Let A be a compact subset of a separable metrizable space X. Let n be the
dimension of X A, and let y be a point of the n-dimensional parallelotope E’.
If f is a homeomorphism of A into the (q n)-dimensional parallelotope Y
E X En, where q => 1 + dim X, and if f(A) E X [y], then f can be extended
to a homeomorphism of X into Y.
The theorem holds also in the case n it is then a generalization of the

Urysohn imbedding theorem and reads as follows:

(2) Let A be a compact subset of a separable metrizable space X and let y be a
point of the Hilbert parallelotope E. Any homeomorphism f of A into the
Hilbert parallelotope Y E E, such that f(A) E X [y], can be extended
to a homeomorphism of X into Y.

For finite q every compact subset of the Euclidean q-dimensional space R is
contained in a homeomorph of Eq; hence E may be replaced by R in the state-
ment of (1). In the Menger-NSbeling theorem it is immaterial whether Eq or R
is used, but for (1) the use of E results in a theorem which is a priori stronger.

It is interesting to compare (1) with the theorems of Gehman and Adkisson-
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