THE DECOMPOSITION OF MEASURES

BY PAUL R. HALMOS

1. Introduction. The main purpose of this paper is to prove a theorem on the decomposition of measures (Theorem 1 of \$5)—a theorem which asserts that under certain hypotheses a measure space can be expressed as a direct sum of measure spaces. Although the result is of a certain independent interest, it is proposed chiefly as a new method: a tool to be used in the theory of measure-preserving transformations. In \$6 we shall give, using this method, an easy proof of a theorem, due to von Neumann, on the decomposition of an arbitrary measure-preserving transformation into ergodic parts. In a subsequent paper we shall apply the method to the spectral theory of measure-preserving transformation into parts which have either pure point spectrum or pure continuous spectrum.

2. Measure spaces and separability. Let Ω be any set of elements ω and let \mathcal{B} be a Borel field of subsets of Ω .¹ We suppose that on \mathcal{B} there is defined a measure m with $m(\Omega) = 1$: m is a non-negative, countably additive function of sets. We shall call Ω , together with \mathcal{B} and m, a measure space; when necessary we shall write $\Omega(\mathcal{B}, m)$ for Ω , to emphasize the particular Borel field and measure under consideration. All the Borel fields we shall consider will be supposed to be (not necessarily proper) subfields of \mathcal{B} , so that we may assume that the measure m is defined on them. If α is a Borel field and A a set, A $\epsilon \alpha$, we shall say that A is measurable (\mathfrak{A}); instead of measurable (\mathfrak{B}) we shall generally say measurable. A similar terminology will be used concerning the measurability of functions. We shall call the smallest Borel field containing a given collection of sets the Borel field spanned by them. For two sets, functions, transformations, etc., we shall use the symbol \doteq to denote the fact that they are equal except possibly for a set of measure zero (i.e., equal almost everywhere or a. e.).² Two Borel fields α_1 and α_2 (both contained in \mathfrak{B}) will be called *equivalent*, in symbols $\mathfrak{A}_1 \simeq \mathfrak{A}_2$, if to every set E in either one of them there corresponds a set F in the other so that $E \doteq F$.

There are two common notions of separability for measure spaces. $\Omega(\mathcal{B}, m)$

Received February 12, 1941.

¹ For a definition of the notions *field*, *Borel field*, *strict separability*, etc., to be used throughout this paper, see [3], pp. 752–753. Numbers in brackets refer to the bibliography at the end of the paper.

² Thus if E and F are measurable sets we write $E \doteq F$ if $m(EF^{-1} + E^{-1}F) = 0$, where we use the notation E^{-1} for the complementary set $\Omega - E$.