THE DISTRIBUTION OF THE NUMBER OF SUMMANDS IN THE PARTITIONS OF A POSITIVE INTEGER

By Paul Erdös and Joseph Lehner

1. It is well known that $p(n)$, the number of unrestricted partitions of a positive integer n, is given by the asymptotic formula [2] ${ }^{1}$

$$
\begin{equation*}
p(n) \sim \frac{1}{4 n 3^{\frac{1}{2}}} \exp C n^{\frac{1}{2}}, \quad C=\pi\left(\frac{2}{3}\right)^{\frac{1}{2}} . \tag{1.1}
\end{equation*}
$$

In §2 we prove that the "normal" number of summands in the partitions of n is $C^{-1} n^{\frac{1}{2}} \log n$. More precisely, we prove the following

Theorem 1.1. Denote by $p_{k}(n)$ the number of partitions of n which have at most k summands. Then, for

$$
\begin{equation*}
k=C^{-1} n^{\frac{1}{2}} \log n+x n^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{p_{k}(n)}{p(n)}=\exp \left(-\frac{2}{C} e^{-\frac{t}{-} c x}\right) \tag{1.3}
\end{equation*}
$$

The right member of (1.3) is strictly monotone and continuous; it tends to 0 as $x \rightarrow-\infty$ and to 1 as $x \rightarrow+\infty$. Hence, it is a distribution function. Also from (1.3) we clearly obtain the weaker result that if $f(n)$ is any function tending with n to infinity, then the number of summands in "almost all" partitions of n lies between

$$
\begin{equation*}
\frac{n^{\frac{1}{2}} \log n}{C} \pm f(n) \cdot n^{\frac{1}{2}} \tag{1.4}
\end{equation*}
$$

It is easily seen that the number of partitions of n having k or less summands is equal to the number of partitions of n in which no summand exceeds k. Thus the preceding results can be applied to this case also.

In §3 we consider $P(n)$, the number of partitions of n into unequal parts. (By a theorem of Euler, $P(n)$ is also equal to the number of partitions of n into odd summands with repetitions allowed.) We obtain results similar to the above for $p_{k}(n)$, but we shall not give all details of the proof.

In $\S 4$ we derive an asymptotic formula for $p_{k}(n)$,

$$
\begin{equation*}
p_{k}(n) \sim \frac{\binom{n-1}{k-1}}{k!} \tag{1.5}
\end{equation*}
$$

valid uniformly in k in the range $k=o\left(n^{\frac{3}{2}}\right)$.
Received January 9, 1941. The first-mentioned author is a Harrison Research Fellow. ${ }^{1}$ Numbers in brackets refer to the bibliography at the end of this paper.

