SIMULTANEOUS REPRESENTATION IN A QUADRATIC AND LINEAR FORM

By Gordon Pall

1. Reduction to a single equation. Let $c_{1}, \cdots, c_{s}, a, b$ be given integers. Consider the solvability in integers x_{i} of the pair of equations

$$
\begin{equation*}
c_{1} x_{1}^{2}+\cdots+c_{s} x_{s}^{2}=a, \quad c_{1} x_{1}+\cdots+c_{s} x_{s}=b \tag{1}
\end{equation*}
$$

Set $u=c_{1} \cdots c_{s}, t=c_{1}+\cdots+c_{s}$, and assume $t u \neq 0$. The identity

$$
\begin{equation*}
\left(\sum c_{i}\right)\left(\sum c_{i} x_{i}^{2}\right)-\left(\sum c_{i} x_{i}\right)^{2}=\sum_{i<k}^{1, \cdots, s} c_{i} c_{k}\left(x_{i}-x_{k}\right)^{2} \tag{2}
\end{equation*}
$$

suggests introducing the new variables

$$
y_{j}=x_{1}-x_{i} \quad(j=2, \cdots, s),
$$

whence $x_{i}-x_{k}=y_{k}-y_{i}$. Then by (1) and (2),

$$
\begin{equation*}
t a-b^{2}=\phi\left(y_{2}, \cdots, y_{s}\right) \tag{4}
\end{equation*}
$$

where ϕ is the quadratic form, in $s-1$ variables,

$$
\begin{equation*}
\sum_{j}^{2, \cdots, s} c_{j}\left(t-c_{j}\right) y_{j}^{2}-2 \sum_{j<k}^{2, \cdots, s} c_{j} c_{k} y_{j} y_{k} . \tag{5}
\end{equation*}
$$

2. The author ${ }^{1}$ treated a more general pair of equations $a=q\left(x_{1}, \ldots, x_{s}\right)$, $b=l\left(x_{1}, \cdots, x_{s}\right)$ in 1931, the coefficients of q and l being unrelated. The present article was suggested by recent work of L. E. Dickson. ${ }^{2}$ Quite general results are obtainable by studying the form ϕ, without attempting to replace it by a form without cross-product terms. We shall consider mainly the case of positive c_{i}, though some of our results do not involve this restriction.
3. Cases in which (4) implies (1). If $t a-b^{2}$ is represented in ϕ for integers y_{j}, and x_{i} are obtained from (12) and (3), then $t x_{1}=b+\sum c_{j} y_{j}$, and all the x_{i} are integers along with x_{1}. This proves

Theorem 1. Let $t u \neq 0$. The number of solutions of (1) in integers x_{i} is equal to the number of solutions of (4) in integers y_{j} satisfying

$$
\begin{equation*}
c_{2} y_{2}+\cdots+c_{s} y_{s} \equiv-b(\bmod t) \tag{6}
\end{equation*}
$$

Received October 7, 1940.
${ }^{1}$ G. Pall, Quarterly Journal of Mathematies, (Oxford), vol. 2(1931), pp. 136-143; to be referred to as QJ.
${ }^{2}$ L. E. Dickson, American Journal of Mathematics, vol. 56(1934), pp. 513-528. See also Dickson's Modern Elementary Theory of Numbers, Chicago, 1939, Chapter 10.

