SIMULTANEOUS REPRESENTATION IN A QUADRATIC AND LINEAR FORM

By Gordon Pall

1. Reduction to a single equation. Let c_1, \ldots, c_s , a, b be given integers. Consider the solvability in integers x_i of the pair of equations

(1)
$$c_1x_1^2 + \cdots + c_sx_s^2 = a, \quad c_1x_1 + \cdots + c_sx_s = b.$$

Set $u = c_1 \cdots c_s$, $t = c_1 + \cdots + c_s$, and assume $tu \neq 0$. The identity

(2)
$$(\sum c_i)(\sum c_i x_i^2) - (\sum c_i x_i)^2 = \sum_{i < k}^{1, \dots, k} c_i c_k (x_i - x_k)^2$$

suggests introducing the new variables

(3)
$$y_j = x_1 - x_j$$
 $(j = 2, \dots, s)_j$

whence $x_i - x_k = y_k - y_i$. Then by (1) and (2),

(4)
$$ta - b^2 = \phi(y_2, \cdots, y_s),$$

where ϕ is the quadratic form, in s - 1 variables,

(5)
$$\sum_{j}^{2,\dots,s} c_j(t-c_j)y_j^2 - 2\sum_{j< k}^{2,\dots,s} c_jc_ky_jy_k.$$

2. The author¹ treated a more general pair of equations $a = q(x_1, \dots, x_s)$, $b = l(x_1, \dots, x_s)$ in 1931, the coefficients of q and l being unrelated. The present article was suggested by recent work of L. E. Dickson.² Quite general results are obtainable by studying the form ϕ , without attempting to replace it by a form without cross-product terms. We shall consider mainly the case of positive c_i , though some of our results do not involve this restriction.

3. Cases in which (4) implies (1). If $ta - b^2$ is represented in ϕ for integers y_i , and x_i are obtained from (1₂) and (3), then $tx_1 = b + \sum c_i y_i$, and all the x_i are integers along with x_1 . This proves

THEOREM 1. Let $tu \neq 0$. The number of solutions of (1) in integers x_i is equal to the number of solutions of (4) in integers y_i satisfying

(6)
$$c_2y_2 + \cdots + c_sy_s \equiv -b \pmod{t}.$$

Received October 7, 1940.

¹G. Pall, Quarterly Journal of Mathematics, (Oxford), vol. 2(1931), pp. 136–143; to be referred to as QJ.

² L. E. Dickson, American Journal of Mathematics, vol. 56(1934), pp. 513-528. See also Dickson's Modern Elementary Theory of Numbers, Chicago, 1939, Chapter 10.