THE FREDHOLM THEORY OF INTEGRAL EQUATIONS

By F. Smithies

1. Introduction

1.1. Let us consider Fredholm's integral equation of the second kind:

(1.1.1)
$$x(s) = y(s) + \lambda \int k(s, t) x(t) dt,$$

where the integration is taken over a fixed interval (finite or infinite), and the range of the variable s is the same interval. If k(s, t) is continuous, and the interval of integration is finite, the solution is given by Fredholm's famous formulas (see [3]¹):

(1.1.2)
$$x(s) = y(s) + \frac{\lambda}{d(\lambda)} \int d(s, t; \lambda) y(t) dt.$$

To describe the symbols appearing in (1.1.2) and in similar formulas we use the following notation. Let M_n be the determinant whose elements are $k(u_i, u_j)$ $(i, j = 1, 2, \dots, n)$. Let N_n be the determinant obtained by replacing the elements on the main diagonal of M_n by zero. Let $M_n^*(s, t)$ be the determinant obtained by bordering M_n thus

$$\begin{vmatrix} k(s, t) & k(s, u_1) & \cdots & k(s, u_n) \\ k(u_1, t) & & & \\ \ddots & & & \\ k(u_n, t) & & & \\ \end{matrix}$$

and let N_n^* be obtained similarly from N_n . In this notation we have

$$d(\lambda) = 1 - \lambda \int k(u, u) \, du + \frac{\lambda^2}{2!} \int \int M_2 du_1 du_2 - \cdots,$$

$$d(s, t; \lambda) = k(s, t) - \lambda \int M_1^*(s, t) \, du_1 + \frac{\lambda^2}{2!} \int \int M_2^*(s, t) \, du_1 du_2 - \cdots,$$

provided that λ is not a zero of $d(\lambda)$. The series are convergent for all finite complex values of λ .

In the present paper I wish to discuss the solution of the equation (1.1.1) when all we know about k(s, t) is that it is a measurable function of (s, t) and that

$$\int\int |k(s, t)|^2 ds \, dt < \infty.$$

Received July 5, 1940.

¹ Numbers in square brackets refer to the bibliography at the end of the paper.