
A CLASS OF DIFFERENTIAL OPERATORS OF INFINITE ORDER I

Br EINAR HILLE

Introduction. The present paper is the first part of an investigation devoted
to the theory of differential operators of infinite order of the form

(i) G(z)

Here

k--0

is supposed to be an entire function, the order and type of which will be sub-
jected to various restrictions;

d(2) , z dz---
k--1is the differential operator of Hermite-Weber; and i z.i Putting

(3) h.(z) (- 1) et’ e-t(e-) H,(z),

where H,(z) is the n4h polynomial of Hermite, we find that

(4) ,h,(z) (2n + 1)h,(z).

The author has shown the importance of the differential operator G(iz) in the
theory of Hermite series (see E. Hille [4]). There only those features of the
theory were discussed which were of immediate use for Hermite series. In the
present paper and its continuation we shall consider various questions omitted
in the earlier discussion.
The basic notion of applicability of a differential operator was given on page

897 of the paper quoted above. Let G(w) be a given entire function and let
be a given class of analytic functions {f(z) }. We say that the differential operator
G(,) applies to or is applicable to the class if the series

(5) .f(z) a  if(z)
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For a survey of the general field of differential operators of infinite order see R. D.
Carmichael [1 and H. T. Davis [2]. The latter has an extensive bibliography. Numbers
in brackets refer to the bibliography at the end of this paper.

For the theory of entire functions used in this paper consult the treatise of G.
Valiron [9 ].
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