THE METHOD OF ORTHOGONAL PROJECTION IN POTENTIAL THEORY

By Hermann Weyl

1. Stating the problem. Roughly speaking the classical boundary-value problem of potential theory for a region G in the Cartesian (x_{1}, x_{2}, x_{3})-space consists in splitting a given function φ in G into two summands $\psi+\eta$, the first of which vanishes along the boundary of G, while the second η is harmonic. The two components are orthogonal if a metric in the functional space is based upon the Dirichlet integral

$$
D[\varphi]=\int(\operatorname{grad} \varphi)^{2} .
$$

\int indicates integration over G.
This fact suggests the idea of replacing the scalar φ by the vector field

$$
f=\operatorname{grad} \varphi \quad\left(\text { in components: } f_{i}=\frac{\partial \varphi}{\partial x_{i}}\right)
$$

and of operating in the Hilbert space of all vector fields f, with its metric defined by

$$
\|f\|^{2}=\int f^{2}=\int\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}\right) .
$$

Then the question arises how to characterize a vector field f as a gradient field without assuming more than its Lebesgue integrability. The vanishing of the line integral

$$
\int(f \cdot d x)=\int\left(f_{1} d x_{1}+f_{2} d x_{2}+f_{3} d x_{3}\right)
$$

over any closed curve in G will not do, because we have nothing but spatial integration at our disposal. The customary condition

$$
\begin{equation*}
\operatorname{rot} f=0 \tag{1}
\end{equation*}
$$

uses differentiation. Let v be any vector field vanishing at the boundary of G. The formula

$$
\begin{equation*}
\operatorname{div}[f, v]=(v \cdot \operatorname{rot} f)-(f \cdot \operatorname{rot} v) \tag{2}
\end{equation*}
$$

Received July 13, 1940.

