CONDITIONS ON THE NODES OF A RATIONAL PLANE CURVE

By Arthur B. Coble

1. Introduction. The rational curve in the plane of order $n+3$ with rational parameter t, say $\rho_{2}^{n+3}(t)$, has a set of $N_{n}=\binom{n+2}{2}$ nodes at points p_{h}, say the set $P_{N_{n}}^{2}$. If $n<3$, these nodes may be taken generically and the rational curve exists. For $n=3$, however, the ten nodes are subject to three conditions first noticed by Valentiner in $1881 .{ }^{1}$ For $n>3$ similar conditions have not been obtained. It is the purpose of this paper to obtain necessary conditions on the set $P_{N_{n}}^{2}$ for generic n. For this we define in $\S 4$ a set of N_{n} "nodular" points $P_{N_{n}}^{\prime 2}$, which is shown to be not projective to $P_{N_{n}}^{2}$ in general. In $\S 5$ a set of N_{n} "catalectic" points $Q_{N_{n}}^{n}$ appears in the space [n] of the conjugate rational envelope $r_{n}^{n+3}(t)$. We prove in §7 that there is a trilinear form $T(2, n$, $n+1)=(\alpha x)(\beta y)(\gamma z)$ with pairs $x, y=p_{h}, q_{h}$ drawn from $P_{N_{n}}^{2}, Q_{N_{n}}^{n}$ which are neutral for z in $T=0$; and in $\S 6$ that there is a trilinear form $T^{\prime}(2, n, n+1)$ with neutral pairs $x^{\prime}, y=p_{h}^{\prime}, q_{h}$ drawn from $P_{N_{n}}^{\prime 2}, Q_{N_{n}}^{n}$ which are neutral for z in $T^{\prime}=0$. The identity of the set $Q_{N_{n}}^{n}$ for the non-projective sets $P_{N_{n}}^{2}, P_{N_{n}}^{\prime 2}$ yields the conditions desired. These conditions are sufficient for $n=3$. We obtain the forms T, T^{\prime} from the rational curve and its conjugate rational envelope by using certain special coördinate systems developed in §§2, 3. The pertinent theory of such forms is given in a recent paper. ${ }^{2}$
2. A special coördinate system in $[n+1]$. Two binary forms of order $n+1$,

$$
\begin{align*}
& (\alpha t)^{n+1}=\left(\alpha_{0} t_{0}+\alpha_{1} t_{1}\right)^{n+1}=\sum_{j}\binom{n+1}{j} a_{i} t_{0}^{n+1-j} t_{1}^{j} \tag{1}\\
& (\beta t)^{n+1}=\left(\beta_{0} t_{0}+\beta_{1} t_{1}\right)^{n+1}=\sum_{j}\binom{n+1}{j} b_{j} t_{0}^{n+1-j} t_{1}^{j} \quad(j=0, \cdots, n+1),
\end{align*}
$$

have a bilinear invariant

$$
\begin{equation*}
(\alpha \beta)^{n+1}=\sum_{j}(-1)^{j}\binom{n+1}{j} a_{j} b_{n+1-j} . \tag{2}
\end{equation*}
$$

If then we put these forms into correspondence with respectively the primes ζ and the points z of a space $[n+1]$ by setting

$$
\begin{equation*}
\zeta_{j}=a_{j}, \quad z_{j}=(-1)^{j}\binom{n+1}{j} b_{n+1-j} \tag{3}
\end{equation*}
$$

Received July 16, 1940.
${ }^{1}$ For references cf. A. B. Coble, The ten nodes of the rational sextic and of the Cayley symmetroid, Amer. Jour. of Math., vol. 41(1919), pp. 243-265; pp. 251-254.
${ }^{2}$ A. B. Coble, Trilinear forms, this Journal, vol. 7(1940), pp. 380-395.

