THE BINARY POLYHEDRAL GROUPS, AND OTHER GENERALIZATIONS OF THE QUATERNION GROUP

By H. S. M. Coxeter

1. Introduction. Hamilton's formulas

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

suggest the following definition for the quaternion group:

$$
R^{2}=S^{2}=T^{2}=R S T \neq 1
$$

The natural generalization is

$$
\begin{equation*}
R^{l}=S^{m}=T^{n}=R S T \tag{1.1}
\end{equation*}
$$

Let $\langle l, m, n\rangle$ denote the (largest) group defined by (1.1). This is symmetrical among l, m, n : for cyclic permutation, obviously; and for transposition, by changing R, S, T into T^{-1}, S^{-1}, R^{-1}, respectively.

Any two of R, S, T suffice to generate $\langle l, m, n\rangle$. For, if

$$
\begin{equation*}
R^{l}=S^{m}=T^{n}=R S T=Z \tag{1.2}
\end{equation*}
$$

we can substitute $Z T^{-1} S^{-1}$ for R, obtaining

$$
\begin{equation*}
S^{m}=T^{n}=Z, \quad(S T)^{l}=Z^{l-1} \tag{1.3}
\end{equation*}
$$

In particular, $\langle 2, m, n\rangle$ is simply defined by

$$
\begin{equation*}
S^{m}=T^{n}=(S T)^{2} \tag{1.4}
\end{equation*}
$$

Another definition for $\langle 2, m, n\rangle$ comes from the observation that $R=S T$. Substituting $S^{-1} R$ for T in (1.1), we obtain $R^{2}=S^{m}=\left(S^{-1} R\right)^{n}$, or, writing S^{-1} for S,

$$
\begin{equation*}
R^{2}=S^{-m}=(R S)^{n} \tag{1.5}
\end{equation*}
$$

In particular, $\langle 2,2, m\rangle$ is the same group as $\langle 2,2,-m\rangle$.
The relations (1.4) and (1.5) are reminiscent of Miller's ${ }^{1}$

$$
s_{1}^{m}=s_{2}^{n}, \quad\left(s_{1} s_{2}\right)^{2}=1
$$

and

$$
s_{1}^{2}=s_{2}^{n}, \quad\left(s_{1} s_{2}\right)^{l}=1
$$

but are by no means identical with them.
Received June 20, 1940; presented to the American Mathematical Society, April 26, 1940.
${ }^{1}$ G. A. Miller, Generalization of the groups of genus zero, Transactions of the American Mathematical Society, vol. 8(1907), pp. 1-13.

