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1. Introduction. The function
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is known as the fundamental solution of the parabolic equation

Following a method of successive approximations introduced by Hadamard
for the case n 1, Gevrey, using the function (1) as the first approximation,
showed the existence of a fundamental solution of the equation
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If in equation (2) we replace Au by an elliptic operator

H(u)= 0 Ou
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then the function in (1) is no longer available as the first approximation of the
fundamental solution of this new equation. For n < 3, this new equation can
be transformed into the equation (2), but for n > 2, this is not the case. Thus
for n > 2, the existence of a fundamental solution is not shown by Gevrey’s
method.

In case the a. in H(u) are not functions of the variable y, Rothe has shown
that the equation

OuH(u) 0
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