# THE FUNDAMENTAL SOLUTION OF THE PARABOLIC EQUATION 

By F. G. Dressel

1. Introduction. The function

$$
\begin{equation*}
\frac{1}{[4 \pi(y-\eta)]^{\frac{1}{3}}} \exp \left(\frac{-\sum_{i=1}^{n}\left(x_{i}-\xi_{i}\right)^{2}}{4(y-\eta)}\right) \quad(y>\eta) \tag{1}
\end{equation*}
$$

is known as the fundamental solution of the parabolic equation

$$
\Delta u-\frac{\partial u}{\partial y}=0 \quad\left(\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}\right) .
$$

Following a method of successive approximations introduced by Hadamard ${ }^{1}$ for the case $n=1$, Gevrey, ${ }^{2}$ using the function (1) as the first approximation, showed the existence of a fundamental solution of the equation

$$
\begin{equation*}
\Delta u+\sum_{i=1}^{n} a_{i} \frac{\partial u}{\partial x_{i}}+a u-\frac{\partial u}{\partial y}=0 \tag{2}
\end{equation*}
$$

If in equation (2) we replace $\Delta u$ by an elliptic operator

$$
H(u)=\sum_{i, k=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i k} \frac{\partial u}{\partial x_{k}}\right),
$$

then the function in (1) is no longer available as the first approximation of the fundamental solution of this new equation. For $n<3$, this new equation can be transformed into the equation (2), but for $n>2$, this is not the case. Thus for $n>2$, the existence of a fundamental solution is not shown by Gevrey's method.
In case the $a_{i j}$ in $H(u)$ are not functions of the variable $y$, Rothe ${ }^{3}$ has shown that the equation

$$
H(u)-\frac{\partial u}{\partial y}=0
$$

Received February 23, 1940; presented to the American Mathematical Society, February 24, 1940. The author is indebted to Mr. Willy Feller for suggesting this paper and for many valuable criticisms during its preparation.
${ }^{1}$ J. Hadamard, Sur la solution fondamentale des équations aux dérivées partielles du type parabolique, Paris Comptes Rendus, vol. 152(1911), pp. 1148-1149. For another treatment of this case see W. Feller, Zur Theorie der stochastischen Prozesse, Math. Annalen, vol. 113(1936-37), pp. 113-160.
${ }^{2}$ M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, Journal de Mathématiques, (6), vol. 10(1913), pp. 105-148.
${ }^{3}$ E. Rothe, Über die Grundlösung bei parabolischen Gleichungen, Math. Zeitschrift, vol. 33(1931), pp. 488-504.

