A CLASS OF FUNCTIONS BOUNDED IN THE UNIT CIRCLE

By H. S. WALL

1. Introduction. The principal object of this note is to show how continued fractions may be used to obtain inequalities for certain functions, particularly, for *moment generating functions* of the form

(1.1)
$$f(x) = \int_0^1 \frac{d\phi(u)}{1+xu},$$

where $\phi(u)$ is bounded and monotone non-decreasing in the interval $0 \leq u \leq 1$. To do this, we shall make use of results contained in three recent papers ([1], [3], [4]).¹

2. Some remarks on continued fractions. It is easy to see that if $g_n \neq 1$ $(n = 1, 2, 3, \dots)$, then the continued fraction

$$(2.1) 1/1 - g_1/1 - (1 - g_1)g_2/1 - (1 - g_2)g_3/1 - \cdots$$

and the series

(2.2)
$$1 + \sum_{i=1}^{\infty} \frac{g_1 g_2 \cdots g_i}{(1 - g_1)(1 - g_2) \cdots (1 - g_i)}$$

are equivalent. In fact, if A_n/B_n is the *n*-th approximant of the continued fraction, then $A_n = (1 - g_1)(1 - g_2) \cdots (1 - g_{n-1})S_n$, $B_n = (1 - g_1)(1 - g_2) \cdots (1 - g_{n-1})$, where S_n is the sum of the first *n* terms of (2.2). Consequently, if the g_n 's are real and $0 \leq g_n < 1$ $(n = 1, 2, 3, \cdots)$, the reciprocal of (2.1) is necessarily convergent, and hence the continued fraction

$$(2.3) g_1/1 + (1 - g_1)g_2x_1/1 + (1 - g_2)g_3x_2/1 + \cdots$$

converges if $x_1 = x_2 = x_3 = \cdots = -1$ and is equal, for these special values of the x_n 's, to

(2.4)
$$1 - \left\{1 + \sum_{i=1}^{\infty} \frac{g_1 g_2 \cdots g_i}{(1 - g_1)(1 - g_2) \cdots (1 - g_i)}\right\}^{-1}$$

Moreover ([3], pp. 159–160), if $0 < g_1 < 1$ the continued fraction (2.3) converges uniformly over the domain

$$D: |x_n| \leq 1 \qquad (n = 1, 2, 3, \cdots);$$

Received February 20, 1940; presented to the American Mathematical Society (under slightly different title), April 26, 1940.

¹ The numbers in brackets refer to the bibliography.