CONJUGATE NETS AND ASSOCIATED QUADRICS

BY M. L. MACQUEEN

1. Introduction. This paper is concerned with the study of the projective differential geometry of certain quadrics which are associated with a point of a curve of a conjugate net on an analytic surface in ordinary space. Some portions of the theory of a surface referred to a conjugate net N_x are summarized in §2, where the differential equation of a general conjugate net N_{λ} , distinct from the parametric conjugate net N_x , is written. The two curves of the net N_{λ} that pass through a point of the surface will be denoted by C_{λ} and C_{μ} . In §3, power series expansions in non-homogeneous projective coördinates for the curve C_{λ} are computed to terms of as high degree as will be needed in this paper. Some immediate geometrical applications to these series are made. For example, in §4, certain pencils of quadrics having contact of the second order at a point of the surface are investigated. Then, in the following section, the quadrics of Moutard at a point of the surface and in the directions of the tangents to the curves of the net N_{λ} through the point are considered. Necessary and sufficient conditions for a curve C_{λ} to be a plane curve and for C_{λ} to be a cone curve are given in §6. In the next section two quadrics which are associated with each point of a curve C_{λ} are defined and the equations of these quadrics are found.

2. Analytic basis. Let the projective homogeneous coördinates $x^{(1)}, \dots, x^{(4)}$ of a point P_x on a surface S referred to a conjugate net N_x in ordinary space be given as analytic functions of two independent variables u, v by equations of the form

$$(1) x = x(u, v)$$

Then the coördinates x of a point on the surface and the coördinates y of the point which is the harmonic conjugate of the point x with respect to the foci of the axis of the point x satisfy a system of equations of the form¹

(2)

$$x_{uu} = px + \alpha x_u + Ly,$$

$$x_{uv} = cx + ax_u + bx_v,$$

$$x_{vv} = qx + \delta x_v + Ny \qquad (LN \neq 0)$$

It is easily verified that

(3)
$$y_u = fx - nx_u + sx_v + Ay, \quad y_v = gx + tx_u + nx_v + By,$$

Received January 10, 1940.

¹ E. P. Lane, Projective Differential Geometry of Curves and Surfaces, Chicago, 1932, p. 138.