CONJUGATE NETS AND ASSOCIATED QUADRICS

By M. L. MacQueen

1. Introduction. This paper is concerned with the study of the projective differential geometry of certain quadrics which are associated with a point of a curve of a conjugate net on an analytic surface in ordinary space. Some portions of the theory of a surface referred to a conjugate net N_{x} are summarized in §2, where the differential equation of a general conjugate net N_{λ}, distinct from the parametric conjugate net N_{x}, is written. The two curves of the net N_{λ} that pass through a point of the surface will be denoted by C_{λ} and C_{μ}. In §3, power series expansions in non-homogeneous projective coördinates for the curve C_{λ} are computed to terms of as high degree as will be needed in this paper. Some immediate geometrical applications to these series are made. For example, in $\S 4$, certain pencils of quadrics having contact of the second order at a point of the surface are investigated. Then, in the following section, the quadrics of Moutard at a point of the surface and in the directions of the tangents to the curves of the net N_{λ} through the point are considered. Necessary and sufficient conditions for a curve C_{λ} to be a plane curve and for C_{λ} to be a cone curve are given in §6. In the next section two quadrics which are associated with each point of a curve C_{λ} are defined and the equations of these quadrics are found.
2. Analytic basis. Let the projective homogeneous coördinates $x^{(1)}, \ldots, x^{(4)}$ of a point P_{x} on a surface S referred to a conjugate net N_{x} in ordinary space be given as analytic functions of two independent variables u, v by equations of the form

$$
\begin{equation*}
x=x(u, v) \tag{1}
\end{equation*}
$$

Then the coördinates x of a point on the surface and the coördinates y of the point which is the harmonic conjugate of the point x with respect to the foci of the axis of the point x satisfy a system of equations of the form ${ }^{1}$

$$
\begin{align*}
& x_{u u}=p x+\alpha x_{u}+L y \\
& x_{u v}=c x+a x_{u}+b x_{v} \tag{2}\\
& x_{v v}=q x+\delta x_{v}+N y \quad(L N \neq 0) .
\end{align*}
$$

It is easily verified that

$$
\begin{equation*}
y_{u}=f x-n x_{u}+s x_{v}+A y, \quad y_{v}=g x+t x_{u}+n x_{v}+B y \tag{3}
\end{equation*}
$$

Received January 10, 1940.
${ }^{1}$ E. P. Lane, Projective Differential Geometry of Curves and Surfaces, Chicago, 1932, p. 138.

