LINEAR FORMS AND POLYNOMIALS IN A GALOIS FIELD

By L. Carlitz

1. Introduction. Let t, u_{0}, u_{1}, \ldots be indeterminates over the Galois field $G F\left(p^{n}\right)$, and put

$$
\begin{equation*}
f_{m}(t)=f_{m}\left(t ; u_{0}, \cdots, u_{m-1}\right)=\prod_{(c)}\left(t+c_{0} u_{0}+\cdots+c_{m-1} u_{m-1}\right) \tag{1.1}
\end{equation*}
$$

the product extending over all sets $\left(c_{0}, \ldots, c_{m-1}\right)$ in $G F\left(p^{n}\right)$. Then by a formula due to E. H. Moore ${ }^{1}$ we may express $f_{m}(t)$ as the quotient of two determinants:

$$
\begin{equation*}
f_{m}\left(t ; u_{0}, \cdots, u_{m-1}\right)=\frac{D\left(u_{0}, \cdots, u_{m-1}, t\right)}{D\left(u_{0}, \cdots, u_{m-1}\right)} \tag{1.2}
\end{equation*}
$$

where

$$
D_{m}=D\left(u_{0}, \ldots, u_{m}\right)=\left|\begin{array}{cccc}
u_{0} & u_{0}^{p^{n}} & \ldots & u_{0}^{p^{n m}} \tag{1.3}\\
\cdots & \cdots & \cdots & \cdots \\
u_{m} & u_{m}^{p^{n}} & \cdots & u_{m}^{p^{n m}}
\end{array}\right|
$$

and $D\left(u_{0}, \cdots, u_{m-1}, t\right)$ is defined by taking $u_{m}=t$.
In the special case ${ }^{2}$

$$
u_{i}=x^{i} \quad(i=0,1,2, \cdots)
$$

where x is an indeterminate, the linear form

$$
c_{0} u_{0}+c_{1} u_{1}+\cdots+c_{m-1} u_{m-1} \quad\left(c_{j} \text { in } G F\left(p^{n}\right)\right)
$$

reduces to $c_{0}+c_{1} x+\cdots+c_{m-1} x^{m-1}$, the general polynomial of degree $<m$, and $f_{m}(t)$ reduces to $\psi_{m}(t)$. We shall refer to (1.4) as the P-case. The chief object of the present paper is to extend certain properties of $\psi_{m}(t)$ to the more general $f_{\boldsymbol{m}}(t)$. In particular we define an operator Ω^{i} for which

$$
g(t w)=\sum \Omega^{i} g(w) f_{i}(t)
$$

where $g(t)$ is an arbitrary linear ${ }^{3}$ polynomial in t. Applications are made to the evaluation of certain power sums. The inverse of $f_{m}(t)$ and certain limiting cases are discussed briefly. Finally we define a polynomial $G_{k}(t)$ of degree k that reduces to $f_{m}(t)$ for $k=p^{n \boldsymbol{m}}$.

Received May 8, 1940.

${ }^{1}$ Bulletin of the American Mathematical Society, vol. 2(1896), pp. 189-195. See also O. Ore, Transactions of the American Mathematical Society, vol. 35(1933), pp. 559-584;
L. E. Dickson, Trans. Amer. Math. Soc., vol. 12(1911), p. 75.
${ }^{2}$ This Journal, vol. 1(1935), pp. 137-168. Cited as I.
${ }^{3}$ That is, of the form $\sum \beta_{i} p^{p^{n i}}$.

