LAGUERRE POLYNOMIALS AND THE LAPLACE TRANSFORM

By J. Shohat

Introduction. The object of this paper is to study the Laplace transform

$$
\begin{equation*}
F(t)=\int_{0}^{\infty} e^{-t u} \phi(u) d u, \quad R(t)>t_{0}>0 \tag{1}
\end{equation*}
$$

where

$$
\int_{0}^{\infty} e^{-u}|\phi(u)|^{2} d u
$$

exists, by means of the orthonormal Laguerre polynomials

$$
\phi_{n}(u)=\phi_{n}\left(u ; 0, \infty ; e^{-u}\right)=\frac{1}{n!}\left(u^{n}-\frac{n^{2}}{1!} u^{n-1}+\frac{n^{2}(n-1)^{2}}{2!} u^{n-2}+\cdots\right)
$$

$$
\begin{equation*}
\int_{0}^{\infty} e^{-u} \phi_{n}(u) \phi_{m}(u) d u=\delta_{m, n} \quad(m, n=0,1,2, \ldots) \tag{2}
\end{equation*}
$$

The connection between the Laplace integral and Laguerre polynomials has been exhibited by Widder [15] ${ }^{1}$ who made use of it in order to obtain an inversion formula for the general Laplace transform

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t u} d \alpha(u) \quad(\alpha(u) \text { bounded, non-decreasing }) \tag{3}
\end{equation*}
$$

Here we are concerned mainly with the uniqueness of the representation (1) and with the nature of $F(t)$. Our discussion is based upon the now classical property of Laguerre polynomials expressed in Parseval's formula

$$
\int_{0}^{\infty} e^{-u} f_{1}(u) f_{2}(u) d u=\sum_{n=0}^{\infty} A_{n} B_{n}
$$

where

$$
A_{n}=\int_{0}^{\infty} e^{-u} f_{1}(u) \phi_{n}(u) d u, \quad B_{n}=\int_{0}^{\infty} e^{-u} f_{2}(u) \phi_{n}(u) d u
$$

(4), where the series converges absolutely, holds for any two functions $f_{1,2}(u)$ such that $\int_{0}^{\infty} e^{-u}\left|f_{1,2}(u)\right|^{2} d u$ exists 2 (which implies the existence of

Received January 1, 1940; presented to the American Mathematical Society, December 31, 1936.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end.
${ }^{2} \phi(u)$ in (1) and also $f(u), f_{1}(u), \cdots$ are in general complex-valued functions of the real variable u; e.g., $f_{1}(u)=\psi_{1}(u)+i \psi_{2}(u)$, where the ψ 's are real.

