APPROXIMATION TO FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS

By A. C. Offord

1. Let f(x) be any integrable function. It is well known that there is just one trigonometric polynomial of order n which coincides with f(x) in the 2n + 1points

$$x_i = i \frac{2\pi}{2n+1}$$
 $(i = 0, 1, ..., 2n).$

The explicit expression for these polynomials is very simple.¹ If we write

(1)
$$\varphi_n(t) = i \frac{2\pi}{n}$$
 $(i = 0, 1, 2, \dots, n-1)$

for $2\pi i/n \leq t < 2\pi (i+1)/n$, the desired polynomials are

(2)
$$U_n(f, x) = \frac{1}{2\pi} \int_0^{2\pi} f(t) \frac{\sin (n + \frac{1}{2})(x - t)}{\sin \frac{1}{2}(x - t)} d\varphi_{2n+1}(t)$$
$$= \frac{1}{2n+1} \sum_{i=0}^{2n} f(x_i) \frac{\sin (n + \frac{1}{2})(x - x_i)}{\sin \frac{1}{2}(x - x_i)},$$

and plainly

$$U_n(f, x_i) = f(x_i)$$
 for all *i*.

In view of the close resemblance between (2) and Dirichlet's sum for the first n terms of the Fourier series of f(x), we may expect to find some analogy between the behavior, for large n, of the polynomials U_n and the sums s_n of the Fourier series of f(x). This is indeed the case. In some ways, however, interpolating polynomials have an advantage over partial sums. If the function is very smooth, polynomials give a much better approximation to the function than partial sums of the same order. Thus, if f(x) is analytic, the respective errors after the *n*-th term are, as is well known, $(\frac{1}{2})^{n+1} 4M/(n+1)!$ and M/(n+1)! respectively, where M is the least upper bound of $|f^{(n+1)}(x)|$.

The advantage of the interpolating polynomials holds only for smooth functions. As the function becomes less and less smooth, the advantage decreases becoming ultimately a disadvantage. Thus $Marcinkiewicz^2$ and $Grünwald^3$

Received September 15, 1939. My warmest thanks are due to Dr. Marcinkiewicz for some very interesting discussions from which I derived much help.

¹ See, e.g., E. Feldheim, *Théorie de la Convergence des Procédés d'Interpolation*, Mémorial des Sciences Mathématiques, no. 95, Paris, 1939, p. 22.

² Interpolating polynomials for absolutely continuous functions (in Polish), Wiadomosci Mat., vol. 39(1935), pp. 85-115; and Sur la divergence des polynomes d'interpolation, Acta Litterarum ac Scientiarum, vol. 8(1937), pp. 131-135.

³ Über Divergenzerscheinungen der Lagrangeschen Polynome, Acta Litterarum ac Scientiarum, vol. 7(1935), pp. 207-221.