APPROXIMATION TO FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS

By A. C. Offord

1. Let $f(x)$ be any integrable function. It is well known that there is just one trigonometric polynomial of order n which coincides with $f(x)$ in the $2 n+1$ points

$$
x_{i}=i \frac{2 \pi}{2 n+1} \quad(i=0,1, \ldots, 2 n)
$$

The explicit expression for these polynomials is very simple. ${ }^{1}$ If we write

$$
\begin{equation*}
\varphi_{n}(t)=i \frac{2 \pi}{n} \quad(i=0,1,2, \cdots, n-1) \tag{1}
\end{equation*}
$$

for $2 \pi i / n \leqq t<2 \pi(i+1) / n$, the desired polynomials are

$$
\begin{align*}
U_{n}(f, x) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \frac{\sin \left(n+\frac{1}{2}\right)(x-t)}{\sin \frac{1}{2}(x-t)} d \varphi_{2 n+1}(t) \tag{2}\\
& =\frac{1}{2 n+1} \sum_{i=0}^{2 n} f\left(x_{i}\right) \frac{\sin \left(n+\frac{1}{2}\right)\left(x-x_{i}\right)}{\sin \frac{1}{2}\left(x-x_{i}\right)}
\end{align*}
$$

and plainly

$$
U_{n}\left(f, x_{i}\right)=f\left(x_{i}\right) \quad \text { for all } i .
$$

In view of the close resemblance between (2) and Dirichlet's sum for the first n terms of the Fourier series of $f(x)$, we may expect to find some analogy between the behavior, for large n, of the polynomials U_{n} and the sums s_{n} of the Fourier series of $f(x)$. This is indeed the case. In some ways, however, interpolating polynomials have an advantage over partial sums. If the function is very smooth, polynomials give a much better approximation to the function than partial sums of the same order. Thus, if $f(x)$ is analytic, the respective errors after the n-th term are, as is well known, $\left(\frac{1}{2}\right)^{n+1} 4 M /(n+1)!$ and $M /(n+1)$! respectively, where M is the least upper bound of $\left|f^{(n+1)}(x)\right|$.

The advantage of the interpolating polynomials holds only for smooth functions. As the function becomes less and less smooth, the advantage decreases becoming ultimately a disadvantage. Thus Marcinkiewicz ${ }^{2}$ and Grünwald ${ }^{3}$

[^0]
[^0]: Received September 15, 1939. My warmest thanks are due to Dr. Marcinkiewicz for some very interesting discussions from which I derived much help.
 ${ }^{1}$ See, e.g., E. Feldheim, Théorie de la Convergence des Procédés d'Interpolation, Mémorial des Sciences Mathématiques, no. 95, Paris, 1939, p. 22.
 ${ }^{2}$ Interpolating polynomials for absolutely continuous functions (in Polish), Wiadomosci Mat., vol. 39(1935), pp. 85-115; and Sur la divergence des polynomes d'interpolation, Acta Litterarum ac Scientiarum, vol. 8(1937), pp. 131-135.
 ${ }^{3}$ Über Divergenzerscheinungen der Lagrangeschen Polynome, Acta Litterarum ac Scientiarum, vol. 7(1935), pp. 207-221.

