A SET OF POLYNOMIALS

By L. Carlitz

1. Let $G F\left(p^{n}\right)$ denote a Galois (finite) field of order p^{n}. Let M denote a polynomial in an indeterminate x with coefficients in $G F\left(p^{n}\right)$:

$$
M=M(x)=c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m}
$$

for $c_{0} \neq 0$, we write $\operatorname{deg} M=m$; for $c_{0}=1, M$ is called primary. Further let ${ }^{1}$

$$
\begin{equation*}
\psi_{m}(t)=\prod_{\operatorname{deg} M<m}(t-M), \quad \psi_{0}(t)=t \tag{1.1}
\end{equation*}
$$

where t is another indeterminate and the product extends over all M (including 0) of degree $<m$; then we have the formula

$$
\psi_{m}(t)=\sum_{i=0}^{m}(-1)^{m-i}\left[\begin{array}{c}
m \tag{1.2}\\
i
\end{array}\right] t^{p^{n i}}
$$

where

$$
\left[\begin{array}{c}
m \tag{1.3}\\
i
\end{array}\right]=\frac{F_{m}}{F_{i} L_{m-i}^{p^{n i}}}, \quad\left[\begin{array}{c}
m \\
0
\end{array}\right]=\frac{F_{m}}{L_{m}}, \quad\left[\begin{array}{c}
m \\
m
\end{array}\right]=1,
$$

and

$$
\begin{align*}
F_{m} & =[m][m-1]^{p^{n}} \cdots[1]^{p(m-1)}, & & F_{0}=1 \\
L_{m} & =[m][m-1] \cdots[1], & & L_{0}=1 \tag{1.4}\\
{[m] } & =x^{p^{n m}}-x & &
\end{align*}
$$

We remark that

$$
\psi_{m}\left(x^{m}\right)=\psi_{m}(M)=F_{m},
$$

for M primary of degree m, so that F_{m} is the product of the primary polynomials of degree m.

For k an arbitrary integer $\geqq 0$, put

$$
\begin{equation*}
k=\alpha_{0}+\alpha_{1} p^{n}+\cdots+\alpha_{s} p^{n s} \quad\left(0 \leqq \alpha_{i}<p^{n}\right) \tag{1.5}
\end{equation*}
$$

and define the polynomial g_{k} by means of

$$
\begin{equation*}
g_{k}=F_{1}^{\alpha_{1}} \cdots F_{s}^{\alpha_{s}}, \quad g_{0}=1 \tag{1.6}
\end{equation*}
$$

Received April 10, 1940.
${ }^{1}$ See this Journal, On certain functions connected with polynomials in a Galois field, vol. 1(1935), pp. 137-168, p. 141. This paper will be cited as I.

