ANNIHILATORS OF QUADRATIC FORMS WITH APPLICATIONS TO PFAFFIAN SYSTEMS

By William G. McGavock

Introduction. This paper develops an algebraic approach to the study of certain arithmetic invariants of Pfaffian systems, thereby furnishing an extension of results previously obtained in connection with these invariants. ${ }^{1}$ The principal algebraic result (Theorem 3.1) states that two quadratic forms defining a pencil of half-rank ρ in a Grassmann ring are simultaneously annihilated by the product of ρ linear forms. This result is employed to construct Pfaffian systems with half-rank ρ and species σ for all positive integers ρ, σ satisfying $\rho \leqq \sigma \leqq 2 \rho$. This disproves a conjecture of Dearborn. ${ }^{2}$ Finally we give a new upper bound for the species σ of a Pfaffian system of r equations, namely, $\sigma \leqq 2 \rho$ $+r-1$.

1. Pencils of forms. By adjoining non-commutative marks u_{1}, u_{2}, \cdots, u_{n} to a commutative field \Re we obtain a Grassmann ring ${ }^{3}$ which will be denoted by ${ }^{(5)}$.
Let S be a set of non-zero forms in $(5) . S$ will be called a pencil if $a \omega+b \phi$ belongs to S whenever all the following three conditions are satisfied:
(i) a, b belong to \Re;
(ii) ω, ϕ belong to S;
(iii) $a \omega+b \phi \neq 0$.

The following properties of a pencil S follow directly from the definition of a pencil or are easily proved:
(a) Every member of S has non-negative degree.
(b) All members of S have the same degree.
(c) If S is a pencil, there is a positive integer r such that all members of S are given by

$$
a_{1} \omega_{1}+a_{2} \omega_{2}+\cdots+a_{r} \omega_{r}
$$

where the a 's range over \mathfrak{R} independently, but are not simultaneously zero.
Received December 20, 1939; part of a doctoral dissertation presented June, 1939 at Duke University.
${ }^{1}$ See, for example, J. M. Thomas, Pfaffian systems of species one, Trans. Amer. Math. Soc., vol. 35(1933), pp. 356-371; Mabel Griffin, Invariants of Pfaffian systems, Trans. Amer. Math. Soc., vol. 35(1933), pp. 929-939; Donald Dearborn, Inequalities among the invariants of Pfaffian systems, this Journal, vol. 2(1936), pp. 705-711; J. M. Thomas, A lower limit for the species of a Pfaffian system, Proc. Nat. Acad. Sci., vol. 19(1933), p. 913.
${ }^{2}$ Loc. cit., p. 711.
${ }^{3}$ For a discussion of Grassmann algebra sce J. M. Thomas, Differential Systems, New York, 1937, p. 10.

