ON A THEOREM OF P. A. SMITH CONCERNING FIXED POINTS FOR PERIODIC TRANSFORMATIONS

By SAMUEL EILENBERG

1. Introduction. The object of this paper is the discussion and generalization of the following theorem due to Smith:¹

Let X be a point set in a Cartesian \mathbb{R}^m , and Λ a topological transformation of X into itself of a finite and prime² period p. If every continuous single-valued image in X of every sphere of dimension $\leq pm - m - 1$ is deformable in X to a point, then Λ leaves fixed at least one point.

The homotopy condition in this theorem is going to be replaced by a homology condition, expressed in terms of true cycles³ in X with coefficients from a commutative ring R with a unit element.

Given $x \in R$ and an integer n, we shall say that x is an *inverse* of n if nx = 1 (1 being the unit element of R).

THEOREM I. Let X be a metric separable space of finite dimension, and Λ a lopological transformation of X into itself of a finite and prime period p. Let R be a commutative ring with a unit element, which does not contain an inverse of p. If every true cycle in X with coefficients in R bounds in X, then Λ leaves fixed at least one point.

If we take R to be the ring of all integers reduced mod q (q = 0, 2, 3, ...), it is easy to verify that the prime p has no inverse in R if and only if q is a multiple of p. We therefore obtain

THEOREM Ia. Let X be a metric separable space of finite dimension, and Λ a topological transformation of X into itself of a finite and prime period p. Let q be any multiple of p (including 0). If every true cycle in X with coefficients mod q bounds in X, then Λ leaves fixed at least one point.

True chains and true cycles can be replaced by singular chains and singular cycles throughout. Moreover, if X is a subset of a Cartesian \mathbb{R}^m , then only the

Received December 7, 1939.

¹ P. A. Smith, A theorem on fixed points for periodic transformations, Annals of Math., vol. 35(1934), pp. 572-578.

² It is clear from Smith's proof that p must be a prime though this is not stated in his theorem.

³ A sequence $C^n = \{c_1^n, c_2^n, \dots\}$ is called an *n*-dimensional *true chain* in X if there exist a compact subset Y of X and a sequence of numbers $\epsilon_i \to 0$ such that c_i^n is an *n*-dimensional ϵ_i -chain in Y. C^n is a *true cycle* if $\partial C^n = 0$, where $\partial C^n = \{\partial c_1^n, \partial c_2^n, \dots\}$ and ∂ is the usual boundary operator. C^n bounds if $C^n = \partial C^{n+1}$ for some true chain C^{n+1} in X. It is convenient in this paper to accept the convention that a true 0-chain $C^0 = \{c_1^0, c_2^0, \dots\}$ is a 0-cycle only if the sum of coefficients in c_i^0 is 0 for $i = 1, 2, \cdots$.