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W. Feller and M. J. Dubourdieu have recently obtained the following simple
inversion of a Laplace integral.

If

(1) f(x) fo e-t da(t)

converges for x > c with a(t) normalized and non-decreasing in every finite
interval, then

[xtl

(2) a(t) lim
(-x)" (n)

-.,..-0 n---V, f (z) (t > 0).

By an obvious change of variable we can write this in the form

(2’) a(t) lim
(-1 k. 0 f(n) kA-0 (t> 0)

where 01 is a sequence satisfying 0 -<_ 0 < 1.
Erlier, however, Widder had obtained an inversion of (1) on the weaker

hypothesis that a(t) is normalized and of bounded variation on every finite
interval. His conclusion was

(2") a(t) lim
(- 1)’ f(’) (t > O)

By a comparison of (2’) and (2") we are led to conjecture that the conclusion
of Feller and Dubourdieu is not the best possible and that actually their operator
(2) has the same degree of generality as the other. By methods closely related
to Widder’s we are able to establish this and even more, namely, that with the
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