THE PARTIAL DIFFERENTIAL EQUATION $\frac{\partial z}{\partial x}+f(x, y) \frac{\partial z}{\partial y}=0$

By Louis D. Rodabaugh

Theorem 1. Let g be a bounded, open, simply connected plane region. Let (x, y) be the rectangular Cartesian coördinates of a general point P of the plane for a particular coördinate system. Let $f(x, y)$ be a function ${ }^{1}$ such that
(a) $f(x, y)$ and $f_{y}(x, y)$ are defined and are continuous in g;
(b) $f(x, y)$ and $f_{y}(x, y)$ have definite finite continuous limits on the boundary of g. Then there exists a function $\psi(x, y)$ such that in g :
(a) $\psi(x, y)$ is defined and is of class C^{\prime} with respect to x and y;
(b) $\psi(x, y)$ satisfies
(1)

$$
\frac{\partial z}{\partial x}+f(x, y) \frac{\partial z}{\partial y}=0
$$

(c) $\psi(x, y)$ satisfies

$$
\begin{equation*}
\psi_{y}(x, y)>0 . \tag{2}
\end{equation*}
$$

Proof. A solution curve of

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{3}
\end{equation*}
$$

shall be called a "characteristic" of (1). A known theorem assures that through each point of g there passes exactly one characteristic of (1), that these characteristics approach arbitrarily close to the boundary of g in both directions of the x-axis, and that they depend continuously on the initial point.

Remarks made by Kamke ${ }^{2}$ for the case where g is an open, simply connected region "lying entirely in" an open region G apply also to the present case, and these remarks constitute the proof of

Lemma 1. There exists a set of open, simply connected regions q_{1}, q_{2}, \ldots with the properties:
(a) each $q_{n}\left[\equiv q\left(t_{n}\right)\right]$ is the set of points belonging to characteristics of (1) which lie in g and pass through an open finite vertical segment t_{n} lying in g;
(b) each $h_{n}\left[\equiv q_{1}+\cdots+q_{n}\right]$ is an open region;
(c) $q_{1}+q_{2}+\cdots=g$;
(d) the common points of t_{n} and h_{n-1} form exactly one open segment, and t_{n} projects out of h_{n-1} in exactly one direction.

