A GENERALIZATION OF POISSON'S SUMMATION FORMULA

By S. Bochner

Poisson's formula. The standard form of Poisson's formula is¹

(1)
$$\sum_{-\infty}^{\infty} f(m) = \sum_{-\infty}^{\infty} F(2\pi n),$$

(2)
$$F(\alpha) = \int_{-\infty}^{\infty} e^{-i\alpha x} f(x) \, dx.$$

If f(z) is analytic in a strip

$$(3) |y| < y_0$$

of the complex plane z = x + iy, $\sum f(m)$ is the sum of the residues of the function

(4)
$$\pi f(z) \frac{\cos \pi z}{\sin \pi z}$$

and therefore it is the limit, as $T \to \infty$, of the Cauchy integral of the function (4) around the rectangle with the corners $\pm T \pm bi$ $(b < y_0)$. In order to transform the integral into $\sum F(2\pi n)$ we have to replace $-i \cot \pi z$ by the expansion

(5)
$$1 + 2\sum_{n=1}^{\infty} e^{-2n\pi i x}$$

for y < 0 and by

(6)
$$-(1+2\sum_{n=1}^{\infty}e^{2n\pi iz})$$

for $y > 0.^{2}$

In our generalizations we will take an unspecified meromorphic function $\varphi(z)$ in a strip (3) instead of the particular function $\cot \pi z$. This will lead to a formula

(7)
$$\sum_{-\infty}^{\infty} r_m f(a_m) = \int_{-\infty}^{\infty} F(\alpha) \, d\Phi(\alpha).$$

The numbers a_m will be simple poles of $\varphi(z)$ and r_m their residues, and the weight function $\Phi(\alpha)$ will be taken from general expansions, analogous to (5) and (6), of the function $\varphi(z)$ in two strips in which it has no poles.

Received October 18, 1939.

¹ Compare S. Bochner, Fouriersche Integrale, p. 33; E. C. Titchmarsh, Fourier Integrals, p. 60.

² Compare E. Lindelöf, Calcul des Résidus, Chapter III.