SOME PROPERTIES OF ,Fy(—n, n + 1, §; 1, p; 0)

By S. O. Rice

The fact that the Legendre function P.(z) may be expressed as the hyper-
geometric series
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where (@), = a(a + 1) --- (@ + r — 1), together with the fact that the general-
ized hypergeometric functions, studied by Bateman and Pasternack,
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have many interesting properties, suggests that other hypergeometric series in
which (—n).(n 4+ 1),/(r!r!) appears as a factor in the general term may also be of
interest.

Here we examine one of these series, namely,
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When the generalizations given here are compared with the earlier results,
only those of Bateman’s involving F,(z) will be mentioned, although in many
cases Pasternack [9]' has obtained relations which, from the standpoint of gener-
ality, lie between those given here and those given by Bateman. This omission
is made for the sake of brevity and simplicity. In all of the following work we
assume that p is not a negative integer, and that n, unless otherwise stated, is a
positive integer so that H,({, p, v) is a polynomial of degree n; and we shall
omit the subscripts 3 and 2 on the hypergeometric function 3F, when it is con-
venient to do so.
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