SOME GENERALIZATIONS OF THE THEORY OF ORTHOGONAL POLYNOMIALS

By Glenn Peebles

1. Introduction. If a function $\rho(x)$ is integrable and non-negative on an interval (a, b) and is such that $\int_{a}^{b} \rho(x) d x>0$, a set of polynomials $\left[p_{n}(x)=\right.$ $\left.a_{n} x^{n}+b_{n} x^{n-1}+\cdots\right]$ is uniquely determined, except for a constant factor, by the relations

$$
\begin{equation*}
\int_{a}^{b} \rho(x) p_{n}(x) p_{m}(x) d x=0, \quad m \neq n . \tag{1}
\end{equation*}
$$

The set of polynomials defined in this way is said to be orthogonal with respect to the weight function $\rho(x)$ over the interval (a, b).

For the weight functions
(a)

$$
\rho(x)=(x-a)^{\alpha}(b-x)^{\beta}, \quad \alpha>-1, \beta>-1,
$$

$$
\begin{array}{ll}
\rho(x)=(x-a)^{\alpha} e^{-\beta x}, & \alpha>-1, \beta>0, b=\infty \\
\rho(x)=e^{-\alpha x^{2}+\beta x}, & \alpha>0, a=-\infty, b=\infty,
\end{array}
$$

the polynomials $\left[p_{n}(x)\right]$ are respectively those of Jacobi, Laguerre, and Hermite. Each of these weight functions satisfies the Pearson differential equation

$$
\begin{equation*}
\frac{1}{\rho(x)} \frac{d}{d x} \rho(x)=\frac{A x+B}{C x^{2}+D x+E} \equiv \frac{A x+B}{M(x)} \tag{2}
\end{equation*}
$$

if A, B, C, D, E are given suitable values.
The class of functions defined by (2) when A, B, C, D, E range through all real values ($C x^{2}+D x+E \neq 0$) is such that for each non-identically vanishing member $\rho(x)$, the expression $[\rho(x)]^{-1} d^{n}\left[M^{n}(x) \rho(x)\right] / d x^{n}$, where $M^{n}(x)$ means [$M(x)]^{n}$, is a polynomial in x of degree n at most. The set of polynomials

$$
\begin{equation*}
q_{0}(x)=1, \quad q_{n}(x)=\frac{1}{\rho(x)} \frac{d^{n}}{d x^{n}}\left[M^{n}(x) \rho(x)\right] \quad(n=1,2,3, \ldots) \tag{3}
\end{equation*}
$$

satisfies (1) when $\rho(x)$ is one of the functions (a). In other cases the property of orthogonality is lost because $\rho(x)$ is such that the integral (1) ceases to have a meaning. The corresponding sets of polynomials (3) will by way of distinction be called non-orthogonal.

As is known, each of the systems of orthogonal polynomials satisfies a recursion formula and a Christoffel-Darboux identity deduced from the recursion formula, and has the property of representing suitable functions by means of convergent

Received July 17, 1939.

