THEOREMS OF THE PICARD TYPE

By Olaf Helmer

1. Introduction. We shall denote the order and the exponent of convergence of an integral function $f(z)$ by

$$
\begin{equation*}
\rho=\operatorname{ord} f \quad \text { and } \quad \alpha=\exp f \tag{1}
\end{equation*}
$$

respectively. It is known that the latter does not exceed the former and is usually equal to it. In the case where

$$
\begin{equation*}
\exp f<\operatorname{ord} f \tag{2}
\end{equation*}
$$

occurs, we shall say that the function $f(z)$ is exceptional.
Picard's original theorem that an integral function $f(z)$ does not omit more than one value has been replaced by the stronger theorem of Picard-Borel which, in the above terminology, can be formulated as follows: For an integral function $f(z)$ there is at most one constant c for which the function $f(z)-c$ is exceptional.

This theorem has, on the one hand, been generalized so as to apply to meromorphic functions. ${ }^{1}$ On the other, it has been refined in various directions; in particular, the constant c has been replaced by a polynomial, ${ }^{2}$ and even by an integral function whose order is smaller than that of $f(z) .^{3}$ It is the main object of this paper to prove another similar generalization of the Picard-Borel theorem that goes a little further. We shall consider pairs of integral functions $f(z)$, $g(z)$, and it will be our object to inquire into the number of integral functions $A(z)$ whose order is less than the larger of the orders of $f(z)$ and $g(z)$, for which the function $f(z)+A(z) \cdot g(z)$ is exceptional. In the special case where $g(z)=1$ we obtain the previously considered cases cited above.

Of the theorems leading up to these results, the first is a precise statement concerning the order of the product of two integral functions, while the second and third deal with the order of an exponential form $A \cdot e^{F}+B \cdot e^{G}$, where A, B are integral functions and F, G are polynomials. These two latter theorems are not new, but have been proved in what follows for reasons of completeness. ${ }^{4}$

Throughout this paper we shall restrict ourselves to integral functions of finite order.

Received April 27, 1939.

${ }^{1}$ Cf. R. Nevanlinna, Le Théorème de Picard-Borel, Paris, 1929.
${ }^{2}$ Cf. E. Borel, Leçons sur les Fonctions Entières, 2d edition, Paris, 1921, p. 89.
${ }^{3}$ Cf. G. Valiron, General Theory of Integral Functions, Toulouse, 1923, p. 303.
${ }^{4}$ Theorem 3 has been used by Borel, but the proof he gives contains a mistake (see page 101 of reference in footnote 2). A correct proof can be found in G. Vivanti, Theorie der eindeutigen analytischen Funktionen, Leipzig, 1906.

