SOME SUMS INVOLVING POLYNOMIALS IN A GALOIS FIELD

By L. Carlitz

1. Let $G F\left(p^{n}\right)$ denote a Galois (finite) field of order p^{n}. Let

$$
M=M(x)=c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m}
$$

denote a polynomial in the indeterminate x with coefficients in the $\operatorname{GF}\left(p^{n}\right)$. For $c_{0}=1, M$ is said to be primary; provided $c_{0} \neq 0$, we write $\operatorname{deg} M=m$. In this note we evaluate certain sums extended over the set of primary polynomials of a given degree. Some of the formulas are new, others were proved earlier but are derived here in a more direct manner. In particular we shall prove the identities

$$
\begin{equation*}
\sum_{\operatorname{deg} M=m} M^{p^{n(m+k)-1}}=(-1)^{m} \frac{F_{m+k}}{L_{m} F_{k}^{p^{n m}}}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\operatorname{dog} M=m}^{m} \frac{1}{M^{p n k-1}}=\frac{L_{k+m-1}}{L_{k-1} L_{m}^{p^{n k}}}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{k}=\left(x^{p^{n k}}-x\right)\left(x^{p^{n k}}-x^{p^{n}}\right) \cdots\left(x^{p^{n k}}-x^{p^{n(k-1)}}\right), \\
& L_{k}=\left(x^{p^{n k}}-x\right)\left(x^{p^{n(k-1)}}-x\right) \cdots\left(x^{p^{n}}-x\right), \tag{1.3}\\
& F_{0}=L_{0}=1 .
\end{align*}
$$

2. We shall require a number of known formulas. ${ }^{1}$ Put

$$
\psi_{m}(t)=\sum_{j=0}^{m}(-1)^{m-j}\left[\begin{array}{c}
m \tag{2.1}\\
j
\end{array}\right] t^{p^{n i}},
$$

where

$$
\left[\begin{array}{c}
m \\
j
\end{array}\right]=\frac{F_{m}}{F_{j} L_{m-i}^{p^{n i}}}, \quad\left[\begin{array}{c}
m \\
0
\end{array}\right]=\frac{F_{m}}{L_{m}}, \quad\left[\begin{array}{c}
m \\
m
\end{array}\right]=1 .
$$

Then $\psi_{m}(G)=0$ for all G of degree less than m, while $\psi_{m}(M)=F_{m}$ for M primary of degree equal to m; indeed we have the factorizations

$$
\begin{equation*}
\psi_{m}(t)=\prod_{\operatorname{deg} G<m}(t+G) \tag{2.2}
\end{equation*}
$$

Received October 12, 1939.
${ }^{1}$ On certain functions connected with polynomials in a Galois field, this Journal, vol. 1(1935), pp. 137-168, p. 139. This paper will be cited as DJ.

