A UNIQUENESS THEOREM FOR ANALYTIC ALMOST-PERIODIC FUNCTIONS

By S. Bochner

We start from the following theorem which can be proved along familiar lines. (i) If the functions $F_n(z)$ (n = 1, 2, ...) are each analytic in the annulus a < r < b and (uniformly) continuous in the closure $a \leq r \leq b$,

(ii) if there exists a constant A such that for $a \leq r \leq b$ and $n = 1, 2, \cdots$

$$\frac{1}{2\pi}\int_0^{2\pi}|F_n(re^{i\theta})|\,d\theta\,\leq A,$$

and

(iii) if there exists an interval $\theta_0 < \theta < \theta_1$ for which

$$\lim_{n\to\infty}\frac{1}{2\pi}\int_{\theta_0}^{\theta_1}|F_n(ae^{i\theta})|d\theta|=0$$

or, what is the same, if there exists a non-negative continuous periodic function $\varphi(\theta)$, which does not vanish identically, for which

$$\lim_{n\to\infty}\frac{1}{2\pi}\int_0^{2\pi}|F_n(ae^{i\theta})|\varphi(\theta) d\theta = 0,$$

then the sequence of functions $F_n(z)$ converges towards 0 everywhere in the annulus.

Putting $z = e^s$, $s = \sigma + it$, we will generalize this theorem to analytic almostperiodic functions in strips.¹ The periodic function $\varphi(\theta)$ will be replaced by an (uniformly continuous) almost-periodic function of the real variable t. The mean value

$$\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}\chi(t)\,dt$$

of an almost-periodic function $\chi(t)$ will be denoted by

$$M_t \chi(t).$$

THEOREM. (i) If each function $f_n(s)$ $(n = 1, 2, \dots)$ is analytic in the strip

$$(1) \qquad \qquad \alpha < \sigma < \beta$$

and uniformly continuous and almost periodic in the closed strip

$$(2) \qquad \qquad \alpha \leq \sigma \leq \beta$$

Received September 13, 1939.

¹See A. S. Besicovitch, Almost Periodic Functions, Cambridge, 1932.