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Two groups are duals of each other if there exists an anti-isomorphism between
their lattices of subgroups. The existence of a dual implies that all the elements
are of finite order. Not every group possesses a dual since there do not exist
duals of Hamiltonian groups. To be a dual and to be Abelian are equivalent
properties of finite groups generated by elements of prime order p; and this
statement is but one in a larger class of theorems connecting duality and com-
mutativity.

Abelian groups possess duals if, and only if, they are self-dual; and a necessary
and sufficient condition for self-duality of an Abelian group is the absence of
elements of infinite order together with the finiteness of its primary components.
Thus the class of self-dual Abelian groups proves to be exactly the same as the
class of those Abelian groupsdetermined in an earlier notel--which admit an
operation mapping the subgroups upon isomorphic quotient-groups.

1. A dualism between the groups G and H is a one-one correspondence d,
mapping the set of all the subgroups of G upon the whole set of subgroups of H
in such a way that

S-_< Tif, andonlyif, Ta =< Sa.
Such a dualism maps the cross-cut (join-group) of a set of subgroups upon the
join-group (cross-cut) of the set of the corresponding subgroups; and it maps in
particular G upon the identity in H and the identity in G upon H. Two groups
are duals of each other if there exists a dualism between them.
The inverse operation of a dualism is again a dualism between the same groups,

whereas the product of two dualisms (if it exists) is a so-called subgroup-iso-
morphism, as it maps a subgroup of a subgroup upon a subgroup of the cor-
responding subgroup.

If d is a dualism between the groups G and H, and if in particular G H,
then d is an autodualism of G and the group G is self-dual.
A dualism d between the groups G and H induces dualisms in all the quotient-

groups of H and in all those subgroups of G which it maps upon normal subgroups
of H. This principle will be used very often.
The following theorem is known and may be stated for future reference.
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