THE NON-EXISTENCE OF A CERTAIN TYPE OF CONTINUOUS TRANSFORMATION

By O. G. Harrold, Jr.

1. It has been shown recently ${ }^{1}$ that there exist continuous transformations defined on an arc A such that, if B denotes the image space, each point in B has exactly k inverse points in $A(k=3,4,5, \ldots)$. Thus for $k=1,3,4,5, \ldots$ it is possible to define an exactly $(k, 1)$ continuous transformation ${ }^{2}$ on an arc. For $k=3,4,5, \ldots$ the image may be taken to be a circle. We show that for $k=2$ the circle cannot be an exactly ($k, 1$) image of an arc, and in fact, no exactly $(2,1)$ continuous transformation can be defined on an arc. This is the same as saying that it is impossible for any Jordan continuum to be so generated as the path of a moving point, whose coördinates are continuous functions of the time ($0 \leqq t \leqq 1$), that every point of the continuum is passed through exactly twice.
2. In this section it will be shown that no exactly $(2,1)$ continuous transformation exists carrying an arc into either an arc or a circle. First, we establish

Lemma A. Let T be a continuous transformation of A into B such that each point $b \in B$ has at most two inverse points in A. If $T(x y)=a b$ preserves end-points, where $x y$ is an arc in A and $a b$ is an arc in B, then T is topological on $x y$.

This lemma can be proved immediately if we notice that it is essentially equivalent to the following theorem concerning a real continuous function:

If $f(x)$ is continuous for $0 \leqq x \leqq 1, f(0)=0, f(1)=1,0 \leqq f(x) \leqq 1$, and finally for each $y(0 \leqq y \leqq 1) f^{-1}(y)$ consists of one or two values, then f is monotonic on $0 \leqq x \leqq 1$.

From Lemma A it follows easily that our image space can be no arc. Evi-
Received January 4, 1939; in revised form, May 31, 1939.
${ }^{1}$ The following example, formulated by G. E. Schweigert, shows that an exactly $(3,1)$ continuous transformation can be defined on an arc, the image being a circle.

Let C be a circle and $\left(y_{n}\right)$ a sequence of distinct points on C in cyclic order with lim $y_{n}=y_{1}$. Let the arc of C between y_{n} and y_{n+1} be denoted by Y_{n}. Set $x_{n}=1-n^{-1}$. Let the arc of the unit interval between x_{n} and x_{n+1} be denoted by X_{n}. Define T as follows. Map X_{1} topologically on Y_{1} with $T\left(x_{1}\right)=y_{1}$. For $n \geqq 1$, map $X_{2 n+1}$ on $Y_{n}+Y_{n+1}$ topologically with $T\left(x_{2 n+1}\right)=y_{n}$. For $n \geqq 1, \operatorname{map} X_{2 n}$ on Y_{n} with $T\left(x_{2 n}\right)=$ $y_{n+1} . \quad T\left(\lim x_{n}\right)=y_{1}$.

If we add to the unit interval the semi-closed interval $1<x \leqq 2$ and map it in one-to-one continuous fashion on the whole circle so that $T(1)=T(2)$, an exactly (4,1) continuous transformation is obtained. The method obviously admits extension.
${ }^{2}$ By a ($k, 1$) transformation is understood a single-valued transformation such that every point in the image space has at most k inverse points. An exactly ($k, 1$) transformation is a single-valued transformation such that every point in the image space has exactly k inverse points.

