THE FIRST CANONICAL PENCIL

By P. O. Bell

I. Introduction

Among the most important covariant lines which lie in the tangent plane to a surface S at a point P_{x} are the first canonical edge of Green [5], the first directrix of Wilczynski [7], the reciprocal [5] with respect to the surface S of the projective normal [4], and the reciprocal with respect to S of the axis of Čech [3]. In view of the fact that these covariant lines, each of which was discovered by a different author, were characterized by apparently unrelated properties, it has been considered remarkable that they all should pass through a common point of the tangent plane. This point has been called the canonical point. Wilczynski [7] and Green [5] have referred to lines in the tangent plane to S at P_{x} as lines of the first kind. Accordingly, a covariant line which passes through the canonical point has been called a canonical line of the first kind. The totality of canonical lines of the first kind form the first canonical pencil [1]. The primary purpose of the author in this note is to present a new geometric characterization of a general canonical line of the first kind. For this purpose the projective normal is first constructed in a new way.

II. The projective normal

Let the surface S be referred to its asymptotic net as parametric, and let us choose the associated fundamental differential equations in Fubini's canonical form

$$
\left\{\begin{array}{l}
x_{u u}=p x+\theta_{u} x_{u}+\beta x_{v} \tag{1}\\
x_{v v}=q x+\gamma x_{u}+\theta_{v} x_{v}
\end{array}\right.
$$

where $\theta=\log \beta \gamma$. Let l denote an arbitrarily chosen line of the first kind. The line l therefore intersects the u - and v-tangents to S at P_{x} in points ρ and σ whose general coördinates are of the forms $\rho=x_{u}-b x, \sigma=x_{v}-a x$, in which a and b are functions of u and v. Let l^{\prime} denote the reciprocal of l with respect to S at P_{x}. Let τ and ω denote, respectively, the points distinct from P_{x} in which the line l^{\prime} intersects the quadrics of Wilczynski and Lie [7] at the point P_{x}. The general coördinates of τ and ω may easily be found to be given by the expressions $\tau=z+\left(a b-\frac{1}{2} \theta_{u v}\right) x$ and $\omega=\tau-\frac{1}{2}(\beta \gamma) x$, in which $z=x_{u v}-a x_{u}-b x_{v}$. For this purpose one would make use of the equations

$$
\begin{equation*}
2\left(x_{2} x_{3}-x_{1} x_{4}\right)-\theta_{u v} x_{4}^{2}=0 \tag{2}
\end{equation*}
$$

Received December 15, 1938; presented to the American Mathematical Society, April 9, 1937.
${ }^{1}$ Numbers in brackets refer to the bibliography at the end of the paper.

