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The general existence problem for a specified type of transformation of one
given compact set onto another is of long standing and has received numerous
contributions over a considerable span of years. For example, a classical result
of Hahn and Mazurkiewicz yields the conclusion that any compact locally
connected continuum can be mapped continuously onto any other one but cannot
be so mapped onto a non-locally-connected continuum.

In this paper the question of the mappability of a compact locally connected
continuum M onto an interval by particular sorts of continuous transformations
will be considered. This is, of course, the same thing as considering the defina-
bility of particular kinds of continuous, real-valued functions on M. In this
connection the reader is referred to closely related papers by ech, Mazurkie-
wicz, Aitchison, C. Pauc, Kuratowski, and the author.
We consider monotone, non-alternating, interior and light transformations.

If A and B are compact continua, a continuous transformation T(A) B is (1)
monotone provided the inverse set T-(b) of each point b in B is connected, (2)
non-alternating if for any two points x and y of B, v-i(x) does not separate any
two points of T-i(y) in A, (3) interior provided the image of every set open in A
is open in B, and (4) light provided that for each point b in B, T-i(b) is totally
disconnected (or of dimension 0).
The principal results will be found in 2 and 4. In 2 it is shown that a

compact locally connected continuum M can be mapped onto an interval by a
non-alternating interior transformation f if and only if the cyclic elements of M
are arranged into a cyclic chain. In 4 it is shown that in case M is 1-diraen-
sional, f can in addition be chosen as a light transformation.

1. Lemmas on joining and subdivision. If a and b are points of a locally
connected continuum M and K is the set of all points separating a and b in M,
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