A MEAN ERGODIC THEOREM

By Nelson Dunford

In this note we shall give an ergodic theorem of the von Neumann type¹ for continuous *n*-parameter uniformly bounded semi-groups of linear transformations in a Banach space. The method of proof is an extension of one used by F. Riesz² and K. Yosida³ for the discrete case in one dimension.

Throughout the note we shall use the following notation and terminology. E_n is Euclidean *n*-space, E_n^+ is the set of points $\alpha = (a_1, \dots, a_n)$ in E_n with $a_i \geq 0$ $(i = 1, \dots, n)$, I_r is a cube of side r > 0 in E_n . That is, I_r is the set of points $\alpha = (a_1, \dots, a_n)$ is E_n for which

(1)
$$c_r^j \leq a_j \leq c_r^j + r$$
 $(j = 1, \cdots, n),$

where c_r^j $(j = 1, \dots, n)$ is an arbitrary real function defined for r > 0. When we are dealing with functions defined only on E_n^+ , it will be assumed that all cubes mentioned are in E_n^+ . We shall sometimes use the symbol V_r for the volume r^n of a cube I_r . A set T_{α} ($\alpha \in E_n^+$) of linear transformations in a Banach space \mathfrak{B} is said to form a *semi-group* in case

(2)
$$T_{\alpha+\beta} = T_{\alpha}T_{\beta}, \qquad \alpha, \beta \in E_{n}^{+},$$

and in case T_{α} is defined for every $\alpha \in E_n$, it is said to form a group if T_0 is the identity and equation (2) holds for all α , $\beta \in E_n$. A group (or semi-group) T_{α} is said to be uniformly bounded in case $||T_{\alpha}||$ is bounded in α , and it is said to be weakly measurable in case the numerical function $\bar{x}T_{\alpha}x$ is measurable (in the sense of Lebesgue) for every $x \in \mathfrak{B}$ and $\bar{x} \in \mathfrak{B}$ (the space conjugate to \mathfrak{B}). A function x_{α} defined on E_n (or E_n^+) is said to be almost separably valued in case there is a set E_0 of measure zero such that the set of points x_{α} , $\alpha \in E_0$, is a separable subset of \mathfrak{B} . If for every cube I_r of side r > 0 we have a point $y(I_r) \in \mathfrak{B}$, then the set of all $y(I_r)$ is said to be weakly compact with respect to $r \to \infty$ in case every particular set I_r ($0 < r < \infty$) of cubes contains a sequence I_{r_p} with $r_p \to \infty$ and $y(I_{r_p})$ converging weakly to an element of \mathfrak{B} . A function x_{α} defined on a cube is said to be measurable in case it is the limit almost every-

Received March 18, 1939. The results in this paper were communicated in the note An ergodic theorem for n-parameter groups, Proc. Nat. Acad. Sci., vol. 25(1939), pp. 195–196.

³ K. Yosida, Mean ergodic theorem in Banach spaces, Proc. Imp. Acad. Tokyo, vol. 14(1938), pp. 292-294.

¹ J. von Neumann, Proof of the quasi ergodic hypothesis, Proc. Nat. Acad., vol. 18(1932), pp. 70-82.

² F. Riesz, Some mean ergodic theorems, Jour. London Math. Soc., vol. 13(1938), pp. 274-278.