THE PROBLEM OF TYPE FOR A CERTAIN CLASS OF RIEMANN SURFACES

By F. E. Ulrich

1. Introduction. In the present paper there are obtained sufficient conditions that a certain class of open simply-connected Riemann surfaces shall be of parabolic type,¹ that is, can be mapped one-to-one and in general conformally on the plane with one point removed. The surfaces to be considered are, briefly, surfaces which have a single transcendental singularity which is a limit point of algebraic branch points of first order, and a logarithmic branch point.

The results are derived from a criterion due to Ahlfors.² It can be stated as follows. Let the open simply-connected surface W be spread out over the *w*-plane and a metric on W be defined by a differential form

$$d\sigma = \lambda(u, v) \mid dw \mid$$
, $w = u + iv$,

where λ is a real, single-valued function, continuous on W with the exception of certain isolated points. Moreover, let the metric be so chosen that no singularity of the surface is accessible along a path of finite length. Let W_{ρ} be the region of the surface consisting of those points whose distance from a certain initial point P_0 , in the metric considered, does not exceed a positive number ρ . Let $L(\rho)$ be the length of the boundary of W_{ρ} in the metric considered. Then, a necessary and sufficient condition that W be of parabolic type is that there exist a metric of the type defined above such that the integral

$$\int^{\infty} \frac{d\rho}{L(\rho)}$$

diverges.

2. Class of surfaces to be considered. The surfaces W to be considered are of the following sort.

Let $\{A_{\nu}\}$ ($\nu = 1, 2, 3, ...$) be a countably infinite set of points of the real axis of the *w*-plane, which has as sole limit point the point at infinity. Moreover, suppose $A_{\nu} > 0$ for ν odd and $A_{\nu} < 0$ for ν even. Over each point of $\{A_{\nu}\}$ shall lie one and only one algebraic branch point of first order. There shall be no other algebraic branch points. There shall be a logarithmic branch point over w = 0 along with an infinite number of smooth sheets. There will

Received February 3, 1939.

¹ The writer wishes to express his thanks to Professor Ahlfors for suggesting the problem and for the valuable counsel given by him.

² Comptes Rendus, vol. 201(1935), pp. 30-32.