CERTAIN CONGRUENCES INVOLVING THE BERNOULLI NUMBERS

By H. S. Vandiver

In a previous paper ${ }^{1}$ I gave a general theorem concerning congruences in rings which yields congruences involving Bernoulli numbers, in particular, the relation known as Kummer's Congruence: ${ }^{2}$

$$
\begin{equation*}
h^{n}\left(h^{p-1}-1\right)^{j} \equiv 0\left(\bmod p^{j}\right) \tag{1}
\end{equation*}
$$

for $n-1 \geqq j, n \neq 0(\bmod p-1)$, where p is an odd prime, the left member is expanded in full by the binomial theorem and then b_{t} / t is substituted for h^{t}. The b 's are defined by the recursion formula

$$
(b+1)^{n}=b_{n} \quad(n>1)
$$

where we expand the left member by the binomial theorem and substitute b_{k} for b^{k}. The b 's give the Bernoulli numbers.

A number of proofs of (1) have been given, all, as far as I know, including the restriction $n \neq 0(\bmod \overline{p-1})$; in fact, a simple inspection shows that the result does not hold when $n \equiv 0$. The question naturally arises whether there is some complementary theorem which provides for the case $n \equiv 0(\bmod \overline{p-1})$. Nielsen ${ }^{3}$ investigated this problem and found the relation

$$
\begin{gathered}
1-\frac{1}{p} \equiv \sum_{s=1}^{s=r}(-1)^{s+s \mu}\binom{r}{s} B_{\mu s}(\bmod p) \\
B_{n}=(-1)^{n-1} b_{2 n} ; \quad \mu=\frac{1}{2}(p-1)
\end{gathered}
$$

To obtain this he sets

$$
S_{n}(m)=1^{n}+2^{n}+\cdots+(m-1)^{n}
$$

and employs the following relation (proved by him previously),

$$
\sum_{k=0}^{k=r}(-1)^{k}\binom{r}{k} S_{2 n+2 k \mu}(p) \equiv \sum_{s=1}^{p-1} S^{2 n}\left(1-S^{2 \mu}\right)^{r}
$$

and

$$
S_{2 m}(p) \equiv(-1)^{m-1} B_{m} p\left(\bmod p^{2}\right) \quad(p>3, m>1)
$$

The result follows. Now it is not clear how this argument may be extended to the examination of (2), modulo p^{α}, in lieu of modulo p. But the method of my

[^0]
[^0]: Received January 30, 1939.
 ${ }^{1}$ Bull. Amer. Math. Soc., vol. 43(1937), pp. 417-423.
 ${ }^{2}$ Journal für die Mathematik, vol. 41(1851), pp. 368-372.
 ${ }^{3}$ Traité des Nombres de Bernoulli, pp. 277-278.

