THE ALGEBRA OF LATTICE FUNCTIONS

By Morgan Ward

I. Introduction

1. The numerous disconnected results on numerical functions (that is, functions on the positive integers to the complex numbers) which are summarized in the first volume of Dickson's *History* have been welded into a simple and coherent theory by Bell in a series of papers culminating in his *Algebraic Arithmetic* (Bell [1]¹). Bell has shown in detail (see, for example, Bell [2], [3], [4], [5], [6]) that all the various inversion formulas, factorability properties, numerical integrations, and so on, of these functions follow from three basic facts.

I. The set of all numerical functions form a ring with respect to the operations of addition and Dirichlet multiplication.

The sum $\sigma = \phi + \psi$ of two numerical functions ϕ and ψ is defined by $\sigma(n) = \phi(n) + \psi(n)$, while their Dirichlet product $\pi = \phi \psi$ is defined by

(1.1)
$$\pi(n) = \sum_{d\delta=n} \phi(d)\psi(\delta).$$

II. The set of all numerical functions ϕ such that $\phi(1) \neq 0$ form a group with respect to Dirichlet multiplication.

The inverse ϕ^{-1} of ϕ satisfies

(1.2)
$$\sum_{d\delta=n} \phi(d)\phi^{-1}(\delta) = \begin{cases} 1 & \text{if } n = 1; \\ 0 & \text{otherwise.} \end{cases}$$

For example, the inverse of the function ζ defined by $\zeta(n) = 1$ for all n is the Möbius function $\mu(n)$.

III. The set of all factorable functions is closed with respect to the operation of Dirichlet multiplication.

A function ψ is said to be factorable if

(1.3)
$$\psi(mn) = \psi(m)\psi(n)$$
 if m, n are co-prime.

It may be shown that the factorable functions form a group with respect to Dirichlet multiplication, on excluding the trivial function ω vanishing for all integers n.

Since the positive integers form a semi-ordered set with respect to the relation x divides y, and indeed a lattice, it is natural to ask whether results of like simplicity and generality hold for functions on semi-ordered sets and lattices. But since both Dirichlet multiplication and factorability depend upon a

Received December 27, 1938.

¹ Numbers in brackets refer to the references at the end of the paper.