CONVERGENCE THEOREMS FOR CONTINUED FRACTIONS

By Walter Leighton

1. Introduction. The purpose of this paper is to present a new set of convergence theorems for continued fractions of the form

$$
\begin{equation*}
1+\frac{a_{1}}{1+} \frac{a_{2}}{1+} \frac{a_{3}}{1+} \cdots \tag{1.1}
\end{equation*}
$$

where the a_{n} are complex numbers $\neq 0$. The method used is an extension of a method used in an earlier paper (Leighton [1] ${ }^{1}$) the results of which now follow from Theorem 4.1 of the present paper.

A number of writers ${ }^{2}$ proved independently that if $\left|a_{n}\right| \leqq \frac{1}{4}(n=2,3,4, \ldots)$, the continued fraction (1.1) converges. Szász [1] showed that the constant $\frac{1}{4}$ cannot be improved by proving that the continued fraction

$$
\frac{-\frac{1}{4}-e}{1}+\frac{-\frac{1}{4}-e}{1}+\frac{-\frac{1}{4}-e}{1}+\cdots
$$

diverges for each value of $e>0$. Later, new types of sufficient conditions for convergence were found (Leighton and Wall [1], Jordan and Leighton [1], Leighton [2]), but all of these theorems required that at least an infinite subsequence of the $\left|a_{n}\right| \leqq \frac{1}{4}$. This last condition was recently removed (Leighton [1]) by showing that (1.1) converges if

$$
\begin{equation*}
\left|1+a_{2}\right| \geqq 1+\left|a_{1}\right|, \quad\left|a_{2}\right| \geqq \frac{2+m}{1-m} \tag{1.1}
\end{equation*}
$$

$$
\left|a_{2 n+1}\right| \leqq m<1, \quad\left|a_{2 n+2}\right| \geqq 2+m+m\left|a_{2 n}\right| \quad(n=1,2,3, \cdots)
$$

It will follow incidentally from Theorem 4.4 of the present paper that this condition can be removed in still different ways.

We recall that the n-th approximant A_{n} / B_{n} of a continued fraction

$$
\begin{equation*}
\beta_{0}+\frac{\alpha_{1}}{\beta_{1}+} \frac{\alpha_{2}}{\beta_{2}+} \cdots \tag{1.2}
\end{equation*}
$$

is defined by means of the recursion relations

$$
\begin{gather*}
A_{0}=\beta_{0}, \quad B_{0}=1, \quad A_{1}=\beta_{0} \beta_{1}+\alpha_{1}, \quad B_{1}=\beta_{1}, \\
A_{n}=\beta_{n} A_{n-1}+\alpha_{n} A_{n-2}, \quad B_{n}=\beta_{n} B_{n-1}+\alpha_{n} B_{n-2}, \quad(n=2,3,4, \cdots) . \tag{1.3}
\end{gather*}
$$

Received November 15, 1938.

${ }^{1}$ Numbers in brackets refer to the bibliography.
${ }^{2}$ For bibliography on this criterion see Szasz [1] and Leighton [1].

