ASYMPTOTIC FORMS FOR A GENERAL CLASS OF HYPERGEO-METRIC FUNCTIONS WITH APPLICATIONS TO THE GENERALIZED LEGENDRE FUNCTIONS

By George E. Albert

1. Introduction. The classical differential equation of Jacobi $[5]^1$

(1)
$$(1-z^2)y'' + \{\beta - \alpha - (\alpha + \beta + 2)z\}y' + \nu(\nu + \alpha + \beta + 1)y = 0$$

is solved by the pair of hypergeometric functions (to be designated as the Jacobi functions)

(2)
$$\begin{cases} Y_{\nu,1}^{(\alpha,\beta)}(z) = F(\nu + \alpha + \beta + 1, -\nu; \alpha + 1; \frac{1}{2}(1-z)), \\ Y_{\nu,2}^{(\alpha,\beta)}(z) = [\frac{1}{2}(z-1)]^{-\nu-\alpha-\beta-1} \\ \cdot F(\nu + \alpha + \beta + 1, \nu + \beta + 1; 2\nu + \alpha + \beta + 2; 2/(1-z)). \end{cases}$$

In the following pages forms will be derived for the Jacobi functions (2) which are asymptotic with respect to the large parameter ν .

The Legendre functions of complex degree, order, and argument are defined in terms of the Jacobi functions (2) by the formulas

(3)
$$\begin{cases} P_{\nu}^{\mu}(z) = \frac{1}{\Gamma(1-\mu)} \left(\frac{z+1}{z-1}\right)^{\frac{1}{2}\mu} Y_{\nu,1}^{(-\mu,\mu)}(z), \\ 2Q_{\nu}^{\mu}(z) = e^{\mu\pi i} \frac{\Gamma(\nu+1)\Gamma(\nu+\mu+1)}{\Gamma(2\nu+2)} \left(\frac{z+1}{z-1}\right)^{\frac{1}{2}\mu} Y_{\nu,2}^{(-\mu,\mu)}(z); \end{cases}$$

see Hobson [3] or [4]. In virtue of these relations between the two classes of functions, asymptotic forms will be at hand for the Legendre functions for values of $|\nu|$ which are large in comparison with $|\mu|$, and conversely.

I. The Jacobi functions

2. The normalization of the differential equation. In the differential equation (1) the numbers ν , α , and β will be subject to the blanket restrictions that $|\nu|$ be large and $|\alpha|$, $|\beta|$ be bounded; otherwise they are general complex numbers. The variable z will be allowed to range over the unbounded complex plane, cut along the axis of reals from the point z = 1 to $z = -\infty$, with the exception of an arbitrarily small neighborhood of the point z = -1. The domain of z thus defined will be consistently designated by R_z . In virtue of the known continuation formulas for hypergeometric functions, the omission of any small neighborhood of the point z = -1 involves no loss of generality in the results to be obtained.

Received October 8, 1938; in revised form, March 22, 1939.

¹ Numbers in brackets refer to the bibliography at the end of the paper.