SURFACES OF NEGATIVE CURVATURE AND PERMANENT
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1. Introduction. The various problems connected with transitivity have
been treated extensively for the flows defined by the geodesics on two-dimen-
sional manifolds of negative curvature. A description of the extent to which
solutions of the problems have been attained has been given by Hedlund [7].!

The manifolds in question can be obtained by identifying the points congruent
under a Fuchsian group. The present paper shows that if the Fuchsian group
1s of the first kind and the manifold is of negative curvature, the property of per-
manent regional transitivity holds. That is, the geodesics define a flow in the
space of elements such that if O is any open set of elements at time &, O, is
the image of O after time ¢, and O* is any other open set of elements, there exists
a ¢ such that for | ¢| > ¢ the set O;-O* is not empty. It is thus an extension
of a similar result obtained by Hedlund [6] in the case of constant negative
curvature. The extension requires the derivation of numerous geometric
results which should be useful in the further study of the geodesic flows on the
surfaces under consideration.

2. A class of simply-connected two-dimensional manifolds. Let U denote
the unit circle u* + »* = 1, and let ¥ be its interior, with the following metric
defined in ¥:

. N(u, v)(d? + dvP)

2
2.1) ds" = 0=t o

Mu, v) of class C™, m = 5,and 0 < ¢ = A(u, v) = bin ¥. The length of any

curve segment of class C' in ¥ is f ds evaluated over the curve, ds given by

(2.1). The geodesics defined by (2.1) are of at least class C? in arc length, co-
ordinates of initial point, and initial direction. The term geodesic will refer
to the geodesics defined by (2.1). Given a point in ¥ and direction at this
point, there is a unique geodesic passing through the given point in the given
direction.

If A(u, v) = 2 in ¥, the geodesics are arcs of circles orthogonal to U and are
called hyperbolic lines. Given any two points P and @ in ¥, there is a unique

hyperbolic line segment joining them; and f ds evaluated over this segment,
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