SURFACES IN FOUR-SPACE OF CONSTANT CURVATURE

By Nathaniel Coburn

1. Introduction. We shall divide the work into two parts: (A) ruled surfaces V_{2} imbedded in four-space of constant curvature S_{4}; (B) surfaces V_{2} imbedded in four-space of constant curvature S_{4} and such that the normal curvature locus of V_{2} is linear. ${ }^{1}$
In (A) we classify the ruled V_{2} in S_{4} by means of the normal curvature locus. Two possible cases exist: (1) the normal curvature locus consists of axial points; (2) this locus consists of planar points. If the locus is axial, then by Struik's extension of Segre's theorem, ${ }^{2}$ these V_{2} are either ruled V_{2} in S_{3} or developable V_{2} in S_{4}. If the locus is planar, then we show a one-to-one correspondence exists between any ruled V_{2} in S_{3} and a set of ruled V_{2} in S_{4}, where S_{3} and S_{4} both have the same curvature K. ${ }^{3}$
In (B) we shall discuss a class of surfaces V_{2} in an S_{4} of constant curvature K which can be placed into a one-to-one isometric correspondence with any V_{2} in an S_{3} of constant curvature $K+L^{2}$.

Finally, we shall show that correspondence theorems of the type mentioned here furnish us with a method of giving existence proofs.
2. Notation. In an S_{4} we introduce the coördinate system

$$
\begin{equation*}
y^{k} \quad(\kappa, \lambda, \mu=1,2,3,4) \tag{2.1}
\end{equation*}
$$

By means of the equations

$$
\begin{equation*}
y^{k}=y^{k}\left(u^{a}\right) \quad(a, b, c=1,2) \tag{2.2}
\end{equation*}
$$

containing the two essential parameters u^{1}, u^{2}, we introduce a two-dimensional manifold in S_{4}. If the tangent two-dimensional planes E_{2} of the surface do not cut the null cone of S_{4} in more than a finite number of lines at any point of the surface, then a Riemannian metric is induced in the surface and it can be called a V_{2}. This last means that we assume the rank of the first fundamental tensor $a_{c b}^{\prime}$ of the V_{2} is two. On the V_{2}, we introduce two orthogonal non-isotropic

Received March 21, 1938, and July 1, 1938; in revised form, December 3, 1938.
${ }^{1}$ Schouten and Struik, Einführung in die neueren Methoden der Differentialgeometrie, Batavia, vol. II, 1938, p. 108. We shall refer to this volume as II.
${ }^{2}$ II, p. 99.
${ }^{3}$ I am deeply indebted to Professor D. J. Struik for his aid in revising part A of this paper.

