THE MEAN ERGODIC THEOREM

By Garrett Birkhoff

1. Introduction. Von Neumann's Mean Ergodic Theorem will be given an elementary proof below in the following generalized form:

Theorem. Let X be any uniformly convex Banach space, and T any linear operator on X such that $|x T| \leqq|x|$ for all x. Then the " n-th means"

$$
g_{n}=\frac{1}{n}\left(f+f T+\cdots+f T^{n-1}\right)
$$

of the transforms $f T^{k}$ of any $f \in X$, under powers of T, converge to a limit.
Uniform convexity is understood in the sense of J, A. Clarkson to mean that $|x| \leqq|y| \leqq 1$ and $|x-y| \geqq \epsilon$ imply $\left|\frac{1}{2}(x+y)\right| \leqq|y|-u(\epsilon)$, where $u(\epsilon)>0$ if $\epsilon>0$. Equivalently, $|x| \leqq|y| \leqq 1$ and $|y|-\left|\frac{1}{2}(x+y)\right| \leqq \epsilon$ imply $|x-y| \leqq w(\epsilon)$, where $w(\epsilon) \downarrow 0$ as $\epsilon \downarrow 0$. Clarkson gives ${ }^{1}$ an elementary proof that the spaces $L_{p}(p>1)$ are uniformly convex.

The author has had access to the following unpublished papers: F. Riesz, Some mean ergodic theorems; N. Wiener, The ergodic theorem (published in this issue of this Journal; S. Kakutani, Weak convergence in uniformly convex spaces; K. Yosida, Mean ergodic theorem in Banach spaces.

The author's proof is most closely related to Wiener's, which alone does not depend on the non-elementary theorem that the unit sphere in Hilbert space is weakly compact. It is more general and somewhat shorter than Wiener's, which applies only to isometric transformations of L_{2}, or Riesz', which is only sketched for $L_{p}(p \neq 2)$. It is much shorter than the proofs of Kakutani and Yosida, although less general.
2. Verbal argument. The key point is that unless $g_{n} T^{k n}$ is very near g_{n}, $\left|\frac{1}{2}\left(g_{n}+g_{n} T^{k n}\right)\right|$ must by uniform convexity be appreciably less than $\left|g_{n}\right|$. Hence the norm of the mean of the $\frac{1}{2}\left(g_{n}+g_{n} T^{k n}\right) T^{h n}$, for $h=0, \cdots, k-1$, will also be appreciably less than $\left|g_{n}\right|$. But this mean is

$$
\left|\frac{1}{2 k}\left(g_{n}+g_{n} T+\cdots+g_{n} T^{2 k n-n}\right)\right|=\left|g_{2 k n}\right|
$$

It follows that if $\left|g_{n}\right|$ is chosen sufficiently near its infimum M, then every $g_{n} T^{k n}$ will be arbitrarily near g_{n}. Hence so will every $g_{m n}$, being the mean of

Received December 29, 1938.
${ }^{1}$ J. A. Clarkson, Uniformly convex spaces, Trans. Am. Math. Soc., vol. 40(1936), pp. 396-414. In Hilbert space, $|x+y|^{2}+|x-y|^{2}=2\left(|x|^{2}+|y|^{2}\right)$, whence if $|x| \leqq|y|$, $\left|\frac{1}{2}(x+y)\right|^{2} \leqq|y|^{2}-\left|\frac{1}{2}(x-y)\right|^{2}$, and $\left|\frac{1}{2}(x+y)\right| \leqq|y|-\frac{1}{2}|x-y|^{2}$ if $|y| \leqq 1$.

