THE MEAN ERGODIC THEOREM

BY GARRETT BIRKHOFF

1. Introduction. Von Neumann's Mean Ergodic Theorem will be given an elementary proof below in the following generalized form:

THEOREM. Let X be any uniformly convex Banach space, and T any linear operator on X such that $|xT| \leq |x|$ for all x. Then the "n-th means"

$$g_n = \frac{1}{n} \left(f + fT + \cdots + fT^{n-1} \right)$$

of the transforms fT^k of any $f \in X$, under powers of T, converge to a limit.

Uniform convexity is understood in the sense of J. A. Clarkson to mean that $|x| \leq |y| \leq 1$ and $|x-y| \geq \epsilon$ imply $|\frac{1}{2}(x+y)| \leq |y| - u(\epsilon)$, where $u(\epsilon) > 0$ if $\epsilon > 0$. Equivalently, $|x| \leq |y| \leq 1$ and $|y| - |\frac{1}{2}(x+y)| \leq \epsilon$ imply $|x-y| \leq w(\epsilon)$, where $w(\epsilon) \downarrow 0$ as $\epsilon \downarrow 0$. Clarkson gives¹ an elementary proof that the spaces L_p (p > 1) are uniformly convex.

The author has had access to the following unpublished papers: F. Riesz, Some mean ergodic theorems; N. Wiener, The ergodic theorem (published in this issue of this Journal; S. Kakutani, Weak convergence in uniformly convex spaces; K. Yosida, Mean ergodic theorem in Banach spaces.

The author's proof is most closely related to Wiener's, which alone does not depend on the non-elementary theorem that the unit sphere in Hilbert space is weakly compact. It is more general and somewhat shorter than Wiener's, which applies only to isometric transformations of L_2 , or Riesz', which is only sketched for L_p ($p \neq 2$). It is much shorter than the proofs of Kakutani and Yosida, although less general.

2. Verbal argument. The key point is that unless $g_n T^{kn}$ is very near g_n , $|\frac{1}{2}(g_n + g_n T^{kn})|$ must by uniform convexity be appreciably less than $|g_n|$. Hence the norm of the mean of the $\frac{1}{2}(g_n + g_n T^{kn})T^{kn}$, for $h = 0, \dots, k - 1$, will also be appreciably less than $|g_n|$. But this mean is

$$\left|\frac{1}{2k}(g_n + g_n T + \cdots + g_n T^{2kn-n})\right| = |g_{2kn}|.$$

It follows that if $|g_n|$ is chosen sufficiently near its infimum M, then every $g_n T^{kn}$ will be arbitrarily near g_n . Hence so will every g_{mn} , being the mean of

Received December 29, 1938.

¹J. A. Clarkson, Uniformly convex spaces, Trans. Am. Math. Soc., vol. 40(1936), pp. 396-414. In Hilbert space, $|x + y|^2 + |x - y|^2 = 2(|x|^2 + |y|^2)$, whence if $|x| \le |y|$, $|\frac{1}{2}(x + y)|^2 \le |y|^2 - |\frac{1}{2}(x - y)|^2$, and $|\frac{1}{2}(x + y)| \le |y| - \frac{1}{2}|x - y|^2$ if $|y| \le 1$.