COMMUTATIVE ALGEBRAS WHICH ARE POLYNOMIAL ALGEBRAS
By R. F. RINEHART

1. Introduction. A polynomial p(x) of non-zero degree with coefficients in
an arbitrary field F gives rise to a linear algebra P, with a principal unit, over F.
P may be viewed from two standpoints: (1) as the algebra generated by an
element 2 whose minimum equation is p(z) = 0; (2) as the algebra of the residue
classes modulo p(x) of the ring of all polynomials with coefficients in #. From
the first standpoint the elements 1, z, «*, - - - , °™", where « is the degree of p(z),
constitute a basis for P; from the second standpoint the residue classes [1], [z],
[#7], - -, [£*7"] constitute a basis. In either case P, considered as an abstract
algebra, has the same properties. We shall call such an algebra the polynomial
algebra generated by p(x).

This paper had its origin in the speculation as to whether every commutative
algebra' with a principal unit might be equivalent to a polynomial algebra.’
The question is here answered in the negative, but it is found that the algebras
which are thus completely characterized by polynomials constitute a wide class
of commutative algebras. Under proper restrictions, depending on the nature
of the ground field, it is shown that the equivalence of a commutative algebra
with a principal unit to a polynomial algebra depends only on the structure
of the radical. This structure is most conveniently described in terms of the
écarts of certain nilpotent subalgebras, a concept which plays a prominent rdle
in some recent researches of Scorza.

The results to follow are established under very loose hypotheses on the
ground field F, namely, that F is separable, and that F, in case it is finite, has
more elements than the commutative algebra in question has indecomposable
Peirce components of a common order, for every order. When F is inseparable,
the present analysis of the structure of the irreducible polynomial algebra, on
which the treatment in §§3 and 4 is fundamentally based, fails. Moreover,
as the examples of §5 show, the results of §§3 and 4 are not true for an inseparable
ground field without imposition of further restrictions. The writer hopes to
investigate the inseparable case later.

2. Converses of the decomposition theorem for polynomial algebras. Let P
be the algebra generated by the polynomial p(x) with coefficients in F, and let
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1 Throughout this paper the term algebra will be used to signify a linear associative
algebra of finite order.

2 Two algebras are said to be equivalent if a simple ring isomorphism exists between the
elements of one algebra and the elements of the other.
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