CERTAIN DIFFERENTIAL EQUATIONS FOR TCHEBYCHEFF
POLYNOMIALS

By H. L. KraLn

1. Introduction. The classical orthogonal polynomials of Jacobi, Laguerre,
and Hermite satisfy a differential equation of the form

(oo 4 Lz + l2o)y/1:(x) + (luz + lm)y;(x) + loya(x) = Naya(2),

where the {l;;} are constants and A\, is a parameter. By repeated iterations
of this equation one can obtain other differential equations of higher order
which have these orthogonal polynomials as solutions. For example, the
Legendre polynomials satisfy

(=" — Dya(@) + 2zyn(2) = n(n + 1y (),
(= — D% (@) + 822" — Lya (x) + (142° — 8)yn(z) + 4ayn(2)
= n’(n + 1)%y.(z).

However, all the iterates have a special form, namely, the coefficient of the r-th
derivative is a polynomial of degree =< r.

In this paper we shall look for polynomial solutions, in particular, for orthog-
onal polynomial solutions, of the general differential equation of this type:
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We also consider an extended definition of orthogonal polynomials which we
call a Tchebycheff set.
DeriniTION.  Given a set of real or complex constants {c,} such that
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1 Tt is obvious that there would be no loss of generality in assuming that lyo = 0, for this
term can be absorbed in the ), .
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