INTEGRAL INEQUALITIES CONNECTED WITH DIFFERENTIAL OPERATORS

By I. Halperin and H. R. Pitt

1. Introduction. Suppose that the measurable functions $f(x), f_{r}(x), q_{r}(x)$, $q_{r, i}(x), p_{r}(x), c(x)$ are defined in the finite or infinite interval $\alpha<x<\alpha+a$, that $f_{0}(x), f_{1}(x), \cdots, f_{n-1}(x)$ are absolutely continuous in every closed subinterval and that almost everywhere ${ }^{1}$ in $(\alpha, \alpha+a)$

$$
f_{0}(x)=q_{0}(x) f(x)
$$

$$
\begin{equation*}
f_{r+1}(x)=f_{r}^{\prime}(x)+\sum_{j=0}^{r} q_{r, j}(x) f_{j}(x)+q_{r+1}(x) f(x) \quad(r=0,1, \cdots, n-1), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
T f(x)=\sum_{r=0}^{n} p_{r}(x) f_{r}(x)+c(x) f(x) \tag{1.2}
\end{equation*}
$$

$$
\begin{array}{rrr}
\left|q_{r, j}(x)\right| & \leqq M_{1} & (j=0,1, \cdots, r ; r=0,1, \cdots, n-1), \\
\left|q_{r}(x)\right| & \leqq M_{1}, & \left|p_{r}(x)\right| \leqq M_{2},
\end{array}
$$

$$
\begin{equation*}
\left|q_{0}(x)\right| \geqq \epsilon>0, \quad\left|p_{n}(x)\right| \geqq \epsilon>0 . \tag{1.4}
\end{equation*}
$$

We write

$$
\begin{equation*}
A_{r}=\left[\int_{\alpha}^{\alpha+a}\left|f_{r}(x)\right|^{p} d x\right]^{1 / p}, \quad B=\left[\int_{\alpha}^{\alpha+a}|T f(x)|^{p} d x\right]^{1 / p}, \tag{1.5}
\end{equation*}
$$

where $p \geqq 1$.
Our object in this paper is to prove inequalities of the form

$$
\begin{equation*}
A_{r} \leqq F\left(A_{0}, A_{n}\right), \quad A_{r} \leqq F\left(A_{0}, B\right) \tag{1.6}
\end{equation*}
$$

and to use them to prove certain results about differential operators.

2. Integral inequalities.

(2.1) Theorem 1. Suppose that (1.1), (1.2), (1.3), and (1.4) are satisfied and that $\eta>0$. Then

$$
\begin{equation*}
A_{r} \leqq \eta B+K A_{0} \quad(r=0,1, \cdots, n-1) \tag{2.1.1}
\end{equation*}
$$

Received June 10, 1938.
${ }^{1}$ The words "almost everywhere" will be understood in similar statements that occur in what follows, although they will be frequently omitted.

