BOOLEAN FUNCTIONS OF BOUNDED VARIATION

BY WILLIAM D. DUTHIE

Introduction. The properties of the relation

$$a \Delta b = ab' + a'b$$

suggest its use in framing a definition of a Boolean function of bounded variation similar to that for the real function of a real variable.¹ It is the purpose of this paper to frame such a definition and deduce the restrictions imposed on the function by it. These conditions in turn make possible a re-interpretation of many of the properties of the Δ -relation in terms of this restricted class of functions.

I. Functions of one variable

DEFINITION 1. The Boolean function f(x) is said to be of bounded variation in the domain (0, B) provided the sum

(1)
$$\sum_{\substack{i=1\\j=1}}^{n} \left[f(\alpha_i) \Delta f(\alpha_j) \right]$$

is different from 1 (the universal class) for all α_i , α_j subject to the conditions

$$(2) 0 < \alpha_i < B,$$

(3)
$$\sum_{i=1}^{n} \alpha_i = B,$$

(4)
$$\alpha_i \alpha_j = 0 \quad \text{for } i \neq j.$$

DEFINITION 2. If the sum (1) is null (= 0), f(x) is said to be an improper function of bounded variation in the domain (0, B).

THEOREM I. A necessary and sufficient condition that the function (in normal form)

$$f(x) = ax + bx'$$

be a function of bounded variation in the domain (0, B) is

(5)
$$(a \Delta b)B \neq 1.$$

Received May 14, 1938; in revised form, June 25, 1938.

¹ For a detailed discussion of the properties of the Δ -relation, see Stone, Postulates for Boolean algebras and generalized Boolean algebras, American Journal of Mathematics, vol. 57(1935), pp. 703-732.