LINEAR FUNCTIONALS AND COMPLETELY ADDITIVE SET FUNCTIONS

By B. J. Pettis

Introduction. We should like first to recall a few well known definitions. Let T = [t] be an abstract space composed of arbitrary elements t, and let \mathcal{F}^{T} denote the collection of all subsets of T. If $\mathcal{F} = [F]$ is a non-vacuous subcollection of $\mathcal{F}^{\mathbf{T}}$, then \mathcal{F} is an *additive family*¹ if

(I) F in \mathcal{F} implies T – F in \mathcal{F} , and (II) F_n in \mathcal{F} for $n = 1, 2, \cdots$ implies $\sum_{n} F_{n}$ in \mathcal{F} .

A finite or denumerable aggregate δ of elements F_1, \dots, F_n, \dots of \mathcal{F} that are disjoint in pairs will be called a *split*; if δ has only a finite number of \mathbf{F}_n 's, it is a finite split. If Δ is the collection of all finite splits and Δ' that of all splits, then $\alpha(F)$ defined from \mathcal{F} to the reals is additive if $\sum_{k} \alpha(F_{i}) = \alpha(\sum_{k} F_{i})$ for every δ in Δ , and completely additive (c.a.) if this holds for every δ in Δ' . The norm of an additive $\alpha(F)$ is defined to be

(0.1)
$$||\alpha|| = \operatorname{Var}(\alpha, T) = \operatorname{l.u.b.}_{\Delta} \sum_{\delta} |\alpha(F_i)|.$$

For such an α it is clear that

(0.2)
$$\begin{aligned} \text{l.u.b.} & |\alpha(F)| \leq ||\alpha|| \leq 2(\text{l.u.b.} |\alpha(F)|), \\ & \mathcal{F} \end{aligned}$$

and hence an additive α is bounded if and only if $||\alpha|| < \infty$. If α is c.a., then $|| \alpha || < \infty$ and α must be bounded.²

The space $A = [\alpha]$, consisting of the functions $\alpha(F)$ bounded and additive (b.a.) over \mathcal{F} , is, under the definition of norm given in (0.1), a linear normed complete space, i.e., a B-space;³ this is likewise true of the subset $C = [\gamma]$ composed of the functions $\gamma(\hat{F})$ completely additive over \mathcal{F} . Thus these in particular are B-spaces: the collection A^{T} of functions b.a. over \mathcal{F}^{T} and its subset C^{T} consisting of functions c.a. over \mathcal{F}^{T} .

The following notational rules will be generally obeyed, although not always:

(i) Roman capitals are subsets of T and script capitals are collections of such subsets.

Received March 14, 1938; presented to the American Mathematical Society, February 26, 1938.

¹S. Saks, Theory of the Integral, Warsaw, 1937, p. 7. Hereafter we shall refer to this treatise as TI.

² TI, p. 10.

³ S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 53. The letters TOL will refer to this monograph.