PROOF OF A GAP THEOREM

By J. MARCINKIEWICZ AND A. ZYGMUND

Using the theory of Fourier transforms, Wiener¹ proved the following Theorem. Let us suppose that the trigonometrical series

(1)
$$\frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos \lambda_k x + b_k \sin \lambda_k x),$$

where $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$, is quadratically bounded over an interval (a, b), that is, that there exists a number M such that

(2)
$$\int_a^b s_n^2(x) dx \leq M^2,$$

where

$$s_n(x) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos \lambda_k x + b_k \sin \lambda_k x)$$

for $n = 1, 2, \cdots$ Let

(3)
$$\lambda_n - \lambda_{n-1} \geq \Delta > 0 \qquad (n = 1, 2, \cdots).$$

We write $b - a = \delta$. Then, if Δ is sufficiently large,

$$\Delta \geq \Delta_0 = \Delta_0(\delta),$$

the series $\sum (a_k^2 + b_k^2)$ converges, and

(5)
$$\frac{1}{2}a_0^2 + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le A(\delta)M^2,$$

where $A(\delta)$ is a constant depending only on δ .³

The object of this note is to give a new and elementary proof of this theorem.

Received March 1, 1938.

- ¹ N. Wiener, A class of gap theorems, Annali di Pisa, vol. 2(1934), pp. 367-372.
- ² We may restrict ourselves to the case of real coefficients.
- ³ The numbers λ_i need not be integers. If λ_1 , λ_2 , \cdots are integers, the theorem may also be stated as follows:

Under the conditions (2), (3), (4), the series (1) converges in mean to a function f(x) such that

$$\frac{1}{\pi} \int_0^{2\pi} |f(x)|^2 dx \le A(\delta) \int_a^b |f(x)|^2 dx.$$